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ABSTRACT 

A major challenge for air quality forecasters is to reduce the uncertainty of air pollution 

emission inventory. Error in the emission data is a primary source of error in air quality 

forecasts, much like the effect of error in the initial condition on the accuracy of weather 

forecasting. Data assimilation has been widely used to improve weather forecasting by 

correcting the initial conditions with weather observations. Similarly, observed concentrations 

of air pollutants can be used to correct the errors in the emission data. In this study, a new 

method is developed for estimating air pollution emissions based on a Newtonian relaxation 

and nudging technique. Case studies for the period of August 1-25, 2006 in 47 cities in China 

indicate that the nudging technique resulted in improved estimations of SO2 and NO2 

emissions in majority of these cities. Predictions of SO2 and NO2 concentrations in January, 

April, August, and October using the emission estimations derived from the nudging 

technique showed remarkable improvements over those based on the original emission data.  

 

Key words:  Nudging, air pollution, emission, data assimilation, inverse modeling, Olympic 

game.  
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1.  Introduction 

As the date for the 2008 Olympic Summer Games approaches, one of the biggest issues 

facing the game’s organizers is accurately forecasting the air quality in the host city, Beijing, 

China. Forecasters at Beijing Meteorological Bureau will rely on coupled numerical weather 

prediction (NWP) and atmospheric chemistry models, such as MODELS-3 (Dennis et al. 

1996), a widely used operational air quality forecast system developed by the United States 

Environmental Protection Agency (EPA), to accomplish their task. MODELS-3 consists of 

three components: 1) a regional NWP model, 2) an air pollution source initialization model, 

and 3) a multi-scale atmospheric chemistry model (Community Multi-scale Air Quality 

Model or CMAQ). The modeling system has demonstrated skill in simulating and forecasting 

air quality at local, city, regional and continental scales in the United States (Byun 1999a,b). 

However, the forecast accuracy depends critically upon the accuracy of pollution emission 

inventory that the model uses as input. Thus, obtaining an accurate air pollution emission 

inventory is a prerequisite for improving air quality forecasts.  

The results from the Beijing City Air Pollution Observation Experiment (BECAPEX) (Xu 

et al. 2003) showed that air pollution emissions change seasonally in Beijing and differed 

significantly from the annual values estimated by Streets and Waldhoff (2000). For example, 

SO2 emission during winter heating periods is often twice as large as that observed during the 

summer. Thus, it is prudent that more accurate estimates of emissions which take into account 

their seasonal variability be used to initialize air quality forecast models. However, neither 

up-to-date nor seasonally-dependent emission inventory is available in China. Therefore, in 

order to depict the seasonal variability of emissions, inversely estimating the emissions prior 
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to the forecast period is the only option.  

Previous studies have demonstrated the effectiveness of using various inverse modeling 

methods to obtain the spatial distribution of pollution emissions, as well as to improve the 

forecast skill of air quality models (e.g., Hartley and Prinn 1993; Yienger and Levy 1995; 

Reich et al. 1999; Guenther et al. 1995, 1999; Bergamaschi et al. 2000; Bousquet et al. 1999; 

Hein et al. 1997; Houwelin et al. 1999; Martin et al. 2002).  Inverse modeling of pollution 

emissions has also been used in air quality modeling in China. Zhu et al. (2002) applied a 

generic algorithm to inversely compute the emissions from point sources. Li et al. (2003) 

developed a simple two-dimensional dispersion model to invert the sources and sinks of 

atmospheric CO2.  Liu et al. (2005) proposed an optimization theory for selecting the sites of 

pollutant-emitting factories with a goal to minimize the impact of air pollution. Xu et al. 

(2005) combined dynamical and statistical approaches to improve air quality forecasts by 

correcting the bias of model forecasts statistically. However, the effectiveness of using an 

inverse modeling approach to correct the emissions in an entire forecast domain and then use 

the corrected emissions to improve the air quality forecast at a regional domain has not being 

quantified in China.  

The purpose of this study is to demonstrate the effectiveness and value of correcting the 

error in emission inventory using a nudging-based inverse modeling approach. The nudging 

scheme is constructed by adding an array of adjustable “nudging terms” to the forecast 

equation to minimize the differences between the predicted and the observed values of air 

pollution concentration.  
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2. Description of Modeling System, Nudging Method and Data 

2.1 Model Description 

The multi-scale air quality forecasting system is comprised of the CMAQ air quality 

model, MM5 mesoscale weather forecast model and an inverse modeling scheme based on a 

four-dimensional data assimilation (FDDA) nudging scheme. CMAQ is the core of the air 

quality forecasting system, Models-3, developed by the U.S. Environment Protection Agency. 

In this study, the air quality forecasting system is configured for the China domain as 

illustrated in Figure 1. The MM5 mesoscale weather forecast model is configured for the 

larger domain (16° – 50°N, 70° – 135° E), whereas the CMAQ model is configured for the 

slightly smaller domain (17° – 49° N, 71° – 134° E) within the MM5 domain. The use of a 

smaller domain for CMAQ is for the purpose of reducing the impact of the lateral boundary 

condition on the air quality forecast. The horizontal resolution for both domains is set to a 

uniform 36 km grid size in both x and y directions. In the vertical direction, a non-uniform 13 

level terrain-following sigma coordinate is used in CMAQ. Higher resolution is used near the 

lower boundary, with half the grids set within the lowest 2 km to better resolve the boundary 

layer processes. MM5 uses 27 levels with the top level at about 17km. Again, higher 

resolution is used within the lowest 2 km to better describe the boundary layer processes.  

2.2 Data  

The lateral boundary conditions and initial conditions for the weather forecast model 

(MM5) are derived from the reanalysis data from the operational weather forecast model of 

the National Meteorology Center of China Meteorological Administration. The data covers 31 

vertical levels on 0.5625° x 0.5625° horizontal grids and the forecasts are updated every 6 
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hours. Nudging of meteorological data from 2500 surface weather stations and 300 upper air 

stations occurs twice daily at 08:00 and 20:00 Beijing local time.  

The performance of the MM5 for the study region was evaluated by Xu et al. (2005). In 

their study, MM5 was run for the period of September 2004 through March 2005. 

Meteorological variables including surface and upper air temperature, humidity and wind 

fields simulated by MM5 were validated against observations from 2500 surface weather 

stations and 300 upper air stations. Xu et al. (2005) concluded that the meteorological 

variables simulated by the MM5 are reliable for driving air quality forecast models in the 

study region. Separately, Beijing Meteorological Bureau has carried out a mandated 

evaluation of the MM5 model before it was adopted for routine operational weather and air 

quality forecasting.  

The emission inventory used to initialize the CMAQ model is from Streets et al. (2003), 

which describes the emissions in Asia for the year 2000. It is interpolated into the 36 km x 36 

km CMAQ domain as shown in Fig. 1. This data set will be referred to as S2000 hereafter.  

For model validation, two sources of datasets were used. The first is the pollution 

emissions and daily mean pollutant concentration observations from 47 surface monitoring 

stations across China as published by China Statistics Press (China Environment Year Book, 

2004). This dataset will be referred to as China2004 hereafter. The second is the 2004 update 

of S2000 (personal communication). It will be referred to as S2004 hereafter.  

In all calculations, CB-IV (Carbon Bond Mechanism version 4.0) is chosen as the 

chemical mechanism in CMAQ. Air quality nudging procedure is applied to selected fair 

weather dates prior to the validation periods as shown in Table 1. For example, for the 
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forecast period of 8/1 – 8/25/2006, which represents the summer condition, nudging is applied 

for July 20 and 21, 2006. Similar procedure is used to produce the air quality forecasts for 

January, April, and October, 2006, representing winter, spring, and fall conditions, 

respectively. Note that except for August for which forecasts were for 25 days due to the lack 

of observations for August 26-31, full month forecasts were made for January, April and 

October.  

2.2 Nudging Technique 

The general form of a Newtonian relaxation nudging scheme can be expressed as  

N)t,x,(F
t

+=
∂
∂ αα

         (1) 

where α is the array of variables to be predicted, F denotes the array of the forcing function, x 

for spatial dimensions, t for time, and N for the “nudging term”. For the concentration of air 

quality parameter P, (1) can be rewritten as  
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where Pmn is the concentration of the mth pollutant at the nth iteration, and β is the empirical 

nudging coefficients which are positive if Pm
*>Pmn, and negative if Pm

*<Pmn .  

The CMAQ model is used to compute the first guess field of Pm1 from the original 

emission data Qm1 derived from S2000. The predicted concentration is used together with the 

observed concentration to derive the corrected emission estimation Qm2 through the iteration 

process described in (3). The new emission estimation is then used to predict the 

concentration Pm2 using CMAQ. Next, Pm1 and Pm2 are used to estimate Qm3 using (3), and so 

on until a convergence is reached. This iterative scheme is referred to as “adaptive nudging” 

hereafter.  

3. Results  

In this section, we describe the results from twin SO2 and NO2 concentration forecasting 

experiments, one uses the nudging scheme described in Section 2 (referred to as the Nudging 

Experiment), and the other without nudging (referred to as the Control Experiment).  The 

case used in this study is for the period of August 1-25, 2006. This period was chosen because 

it is approximately the same period for the Beijing Olympic Game in 2008, and the weather 

during this period was mostly stable. For the Nudging Experiment, observed SO2 and NO2 

concentrations at 47 urban observing stations in China from July 20 and 21, 2006 (fair 

weather days) were used to correct the emissions through the iterative nudging process 

described in Section 2. For the Control Experiment, the original emission data (S2000) was 

used without correction.  

3.1 Improvements in SO2 and NO2 concentration forecasts for August 1-25, 2006 
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Figures 2a,b show the comparison of the August 1-25 mean SO2 and NO2 Air Pollution 

Index (API) values among the Control Experiment, Nudging Experiment, and the 

observations. API is a classification of air pollution severity according to the concentration of 

air pollutants. The China National API values for urban area are described in Table 2 (Fan 

1998). Larger API values correspond to more severe air pollution conditions.  

The simulated API values of SO2 and NO2 are shown in Figure 2, where Panel a) depicts 

the SO2 API index, and b) for the NO2 API index. The API indexes are computed for 47 cities 

across China. It is obvious that the NO2 and SO2 API values from the Nudging Experiment 

(gray) are much closer to the observations (blue) than those from the Control Experiment 

(white) in nearly all cities.  The forecasts from August 1-25 for all 47 cities (a total of 1122 

forecast samples) from the Nudging Experiment are statistically similar to the observations as 

shown in Figures 3a and b. The R2 values between the observed API values and those from 

the Nudging Experiment is 0.44 for SO2 and 0.43 for NO2, both exceeded the 99% 

significance level. In contrast, the R2 values between the observations and the API indexes 

from the Control Experiment were only 0.026 for SO2 and 0.055 for NO2, neither passed the 

90% significance test. Thus, it is evident that the Nudging Experiment showed remarkable 

improvement over the Control Experiment for both the SO2 and the NO2 forecasts.  

The advantage of using “air quality nudging” is also evident when validated for different 

regions. Table 3 lists the differences between the average forecast API and that of the 

observed API in seven regions in China. It is shown that for all seven regions in China, the 

Nudging Experiment showed significant improvement in forecasting SO2 and NO2 API values, 

with error reductions ranging from 54% to 71% for NO2 and 27% to 74% for SO2.  
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3.2 Nudging-derived SO2 and NO2 emissions based on July 2006 SO2 and NO2 

concentrations 

The error reductions in SO2 and NO2 forecasts from the nudging experiment can 

presumably be attributed to the improvements made to the SO2 and NO2 emissions by 

nudging their simulated values toward the observed SO2 and NO2 concentrations. In this 

section, the changes of SO2 and NO2 emissions resulted from the nudging procedure will be 

analyzed. Because the Chinese government only publishes annual SO2 emissions, emissions 

for NO2 need to be derived from other sources. In this study, the S2004 NOx emissions will 

be used as the “observations”.  

The comparison between the derived NOx emissions using the nudging procedure 

described in Section 2 and the 2004 “observations” of NOx emissions (S2004) is shown in 

Figure 4. It is evident that the nudging procedure is clearly effective in improving the NOx 

emissions. For example, on average, the difference between the S2000 and S2004 is 36%, the 

nudging procedure reduced the difference to approximately 10% on average, achieving an 

average improvement of 72%. In other words, if one does not have S2004, the nudging 

procedure employed here effectively led to an “update” of S2000 that is within 10% of the 

S2004 values.  

For SO2 emissions, the comparison between China2004 and the derived emissions is 

shown in Figure 5. The difference between the emissions derived by the nudging procedure 

using July 20-21, 2006 SO2 concentration and the China2004 SO2 emissions (white bars) is 

substantially smaller than that between the S2000 SO2 emissions and China2004 (dark bars) 

at nearly all SO2 emission data locations.  
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where EMA represents S2000 emissions, EMB the estimated emissions using July 20 and 21, 

2006 observed concentrations and meteorology data, EMG the emissions published by the 

Chinese government (China2004), RA the percent departure between S2000 and China2004, 

and RB the percent departure between the derived emissions through the nudging procedure 

and China2004. 

For the 47 air quality monitoring stations across China, RB is smaller than RA at majority 

(82.6%) of the stations. On average, RA (0.96) is almost twice as large as RB (0.49).  Thus, 

if China2004 is considered more accurate than S2000, then it is evident that the nudging 

procedure is effective in substantially reducing the emission error for the majority of the 47 

cities across China, and the average error reduction is approximately 50%. 

3.3 Forecasting the seasonal values of SO2 and NO2 concentrations 

To further quantify the effectiveness of nudging on the air quality forecasts in China, over 

4000 data samples of NO2 and SO2 concentrations taken in 4 months (January, April, August 

and October) at 47 air quality monitoring stations across China and their corresponding 

forecast values are compared statistically. Figure 6 shows the correlation coefficients (R) 

between the data and the forecasts from the experiments without nudging (white bars) and 

those with nudging (dark bars). It is evident that in all seasons, nudging led to significant 

improvements in the correlation between the forecasts and the data for both NO2 and SO2.  

For the four seasons in 2006, the observed SO2 concentrations are more closely correlated 
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with the forecasts using the derived emissions (R=0.44) than the forecasts using the original 

S2000 emissions (R=0.23). This is also true for NO2, with correlation coefficients of 0.49 (for 

forecasts using the derived emissions) and 0.19 (for forecasts using the original 2000 

emissions) (Fig. 6). Thus, one can conclude that the nudging procedure devised in this study 

is effective in reducing the SO2 and NO2 forecast error in all seasons. 
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4.  Conclusions  

Current three-dimensional dynamic air quality modeling and forecasting in China rely 

primarily on the use of an outdated air pollution emission inventory S2000. In this study, we 

demonstrated that by incorporating an adaptive nudging scheme into the CMAQ-based air 

quality forecast system, the error field in the emission data can be reduced effectively through 

an inverse modeling procedure using observed air pollution levels, and the improved 

emissions can further lead to significant improvement in air quality forecasts in all seasons.  

A set of simulations and hindcasts for SO2 and NO2 API values for January, April, August 

and October, 2006 were carried out to quantify the effectiveness of the nudging scheme. The 

experiment for August 2006 is used to quantify the effectiveness of nudging in improving the 

estimation of emission sources. The emissions of SO2 in 47 cities in China were actual SO2 

emission observations are available have been computed inversely using S2000 as the first 

guest field of the emissions and real-time SO2 and NO2 concentrations observed in late July 

2006 to correct the first guest field. The experiments showed that the derived emissions are in 

better agreement with the corresponding observations than the original S2000 emissions, 

indicating that the nudging procedure was effective in reducing the error in the original 

emission inventory. The model results also show that using the derived emissions of SO2 and 

NO2 led to significant improvement in the forecasts of SO2 and NO2 concentrations.  

An implication of the results presented above is that since air pollution emissions are 

quite uncertain in China, one should avoid using uncorrected emissions, such as S2000 in air 

quality forecasting. Using the observations of pollutant concentrations prior to the forecast 

period to correct the emission data shows a great promise for improving air pollution 
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forecasts.  

Finally, it should be noted that air quality forecast error can originate from multiple 

sources. Error in emission inventory is only one of several potential causes of forecast error. 

For example, error in meteorological forecasts and inaccuracy in the description of 

atmospheric chemistry in the model can all lead to air quality forecast error. Correcting the 

error field in the emissions represents only one of several approaches to improve emissions 

and air quality forecasts.  
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Table 1. Description of Nudging Experiments 
 

Experiment 

Cases 

Period of  

Nudging 

Period of  

Forecast  

Correlation (r) with 

observations  

SO2_cmaq  SO2_NF  

Correlation (r) with 

observations 

NO2_cmaq NO2_NF

 

Winter 

 

Dec. 14-15,2005 

 

Jan. 1-31, 2006 

    

0.34     0.43 

   

0.15     0.37 

Spring Mar. 1-2,2006 Apr. 1-30, 2006    0.28     0.48   0.21     0.55 

Summer Jul. 20-21,2006 Aug. 1-25, 2006    0.13     0.39   0.24     0.48 

Fall Sept. 14-15,2006 Oct. 1-31, 2006    0.18     0.47   0.18     0.58 
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Table 2.  API and Corresponding Concentration of Pollutants 

API Levels   Pollutant  Concentration（µg/m3） 

API SO2 NO2 PM10 CO O3 

50 0.050 0.080 0.050  5 0.120 

100 0.150 0.120 0.150  10 0.200 

200 0.800 0.280 0.350  60 0.400 

300 1.600 0.565 0.420  90 0.800 

400 2.100 0.750 0.500 120 1.000 

500 2.620 0.940 0.600 150 1.200 
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Table 3 Comparison of NO2 and SO2 API index differences between Nudging Forecast (NF), observations 

(OBS) and CMAQ control experiments (CMAQ) from August 1-25, 2006.  

 

Region NO2_cmaq

－NO2_obs 

NO2_NF-N

O2_obs 

% Error 

Reduction

SO2_cmaq-

SO2_obs 

SO2_NF-SO2

_obs 

% Error 

Reduction

NE -18 -8 56% -11 -8 27% 

N -13 -6 54% -14 -8 43% 

E -11 -5 55% -16 -8 50% 

S -14 -4 71% -23 -8 65% 

C -16 -6 63% -35 -17 51% 

NW -17 -5 71% -23 -6 74% 

SW -18 -8 56% -41 -15 63% 

Average -15 -6 60% -23 -10 55% 
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Figure Captions: 

Figure 1.  Study area. The outer domain depicts the simulation area for the meteorological 

variables using Mesoscale Model 5 (MM5). The inner domain depicts the area for the air 

quality (CMAQ) model. 

 

Figure 2. Comparison of the August 1-25 mean SO2 and NO2 API values among the Control 

Experiment, Nudging Experiment, and the observations. a) For SO2 API index, and b) For 

NO2 API index. The API indexes are computed for all 47 cities as shown in the figure. It is 

obvious that the NO2 and the SO2 API values from the Nudging Experiment (light shade) are 

closer to the observations (dark shade) than from the Control Experiment (white) in nearly all 

cities.   

 

Figure 3. Scatter plots of the forecast data and the observed data from August 1-25 for all 47 

cities (a total of 1122 forecast samples) from the nudging experiment. a) For SO2 API values; 

b) For NO2 API values.  

 

Figure 4. NOx emission inventory “error” measured in term of the percentage departure from 

the S2004 NOx inventory. White bar is for the “error” of S2000 NOx emission; Black is for 

the error of the derived emission using the nudging procedure. 

 

Figure 5 Deviation ratio between the derived emissions and S2000 with respect to China2004 

emissions. □ RA: Deviation ratio between S2000 and China2004. ■ RB: Deviation ratio 
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between the derived emissions and China2004. 

 

Figure 6. Seasonal change of correlation coefficients between forecast NO2 and SO2 values 

and corresponding observed concentrations. □ Rcmaq: Correlation coefficient for forecasts 

using S2000; ■ RNE : Correlation coefficient for forecasts using the derived emissions. 
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variables using Mesoscale Model 5 (MM5). The inner domain depicts the area for the air 

quality (CMAQ) model. 
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Experiment, Nudging Experiment, and the observations. a) For SO2 API index, and b) For 

NO2 API index. The API indexes are computed for all 47 cities as shown in the figure. It is 

obvious that the NO2 and SO2 API values for the Nudging Experiment (light shade) are closer 

to the observations (dark shade) than the Control Experiment (white) in nearly all cities.   
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Figure 3. Scatter plots of the forecast data and the observed data from August 1-25 for all 47 

cities (a total of 1122 forecast samples) from the nudging experiment; a) for SO2 API values; 

b) for NO2 API values.  
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Figure 4. NOx emission inventory “error” measured in terms of the percentage departure from 

the S2004 NOx inventory. White bar is for the “error” of S2000 NOx emission; Black is for 

the error of the derived emission using the nudging procedure. 
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Figure 5 D
eviation ratio betw

een the derived em
issions and S2000 w

ith respect to C
hina2004 em

issions. □ R
A : D

eviation ratio

betw
een S2000 and C

hina2004. ■ R
B : D

eviation ratio betw
een the derived em

issions and C
hina2004. 
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Figure 6. Seasonal change of correlation coefficients between forecast NO2 and SO2 values 

and corresponding observed concentrations. □ Rcmaq: Correlation coefficient for forecasts 

using S2000; ■ RNE : Correlation coefficient for forecasts using the derived emissions. 
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