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1. INTRODUCTION

With the advent of the Open Radar Data Acquisi-
tion (ORDA) system on WSR-88D radars and the in-
troduction of significantly more powerful signal pro-
cessing hardware comes the opportunity to improve
the method used for estimating the spectrum width,
a measure of the variability of radial wind velocities
within a measurement pulse volume. In addition,
the implementation of new operational modes for im-
proved data quality, including SZ phase coding, will
involve very different signal processing techniques
and hence may require novel methods to meet the
WSR-88D specifications. While spectrum width has
not been used extensively by radar meteorologists
in the past, the new NEXRAD Turbulence Detection
Algorithm (NTDA), developed under direction and
funding from the FAA’s Aviation Weather Research
Program, will soon be using the WSR-88D spectrum
width as a key input for providing in-cloud turbulence
estimates (eddy dissipation rate, EDR) for an oper-
ational aviation decision support system (Williams
et al. 2005). Achieving improved spectrum width es-
timator performance would directly benefit the accu-
racy of the NTDA product.

This paper addresses these issues by evaluat-
ing performance characteristics of several spectrum
width estimators, including the pulse-pair estimator
currently used in the WSR-88D. Evaluations are per-
formed using simulated radar time-series data rep-
resenting a variety of scenarios for different signal-
to-noise ratios, overlaid power ratios, and spectrum
widths. A hybrid algorithm combining three spec-

trum width estimators is proposed, and it is shown
that this algorithm, while slightly more computation-
ally intensive, is more accurate and robust than any
method alone.

2. Methodology

To evaluate and compare different spectrum width
estimators we generated random complex time-
series data for various true spectrum width, signal-
to-noise ratio (SNR) and overlaid power ratio (PR)
scenarios. We used an I&Q simulation technique
based on the method described in Frehlich and Yad-
lowsky (1994); Frehlich (2000); Frehlich et al. (2001)
except that the autocorrelation function is that of a
weather echo as defined in Doviak and Zrnić (1993,
p. 125). This is a preferable method for generating
complex time-series with a given average autocorre-
lation function, as opposed to what is described by
Zrnić (1975), because it is not necessary to gener-
ate as long of a time-series in order to get the correct
temporal statistics.

In what follows, the simulator input (“true”) spec-
trum width will be denoted as W , while the esti-
mated spectrum width will be denoted as Ŵ with a
modifying subscript specifying the estimation tech-
nique used. Estimation errors were calculated by
subtracting the simulator input values from the es-
timated values (i.e. Ŵ − W ). In this paper, we do
not show plots of standard errors (i.e., RMS errors);
rather, we break out the error analysis into biases
and standard deviations, which have quite different
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implications for turbulence detection since bias can-
not be mitigated by averaging while random unbi-
ased errors can. However, RMS error estimates
may be obtained by taking the square root of the
sum of the squared biases and standard deviations.

3. Spectrum Width Estimators

In this section, we used the simulator to generate
short PRT data with the following characteristics,
unless otherwise noted: wavelength λ = 10.5 cm,
the pulse repetition time (PRT) is 987 µs, the num-
ber of samples per time-series (M ) is 88, signal-to-
noise ratios (SNR) of 10 dB, 20 dB, and 30 dB, and
varying input spectrum widths. This corresponds
to the NEXRAD volume control pattern (VCP) 21,
which is commonly used for storms that are not ex-
pected to evolve quickly.

a. The R0/R1 Pulse Pair Estimator

The standard spectrum width estimator currently
used in the WSR-88D radars on short PRT data is
the R0/R1 estimator (Doviak and Zrnić 1993), so
named because it utilizes the ratio of the first two
lags of the autocorrelation function:

Ŵs01 =
(√

2/π
)

Va |log (PS/ |R1|)|1/2 (1)

The “s” in the subscript “s01” indicates that the short
PRT data are used. Here Va is the Nyquist velocity,
PS is the average power of the signal with noise re-
moved, and R1 is the first lag of the autocorrelation
function (i.e. R1 = (n− 1)−1 ∑n−1

k=1 V ∗ (k) V (k + 1)
where V (k) are the complex-valued I&Q radar time-
series). In the event that |R1| < PS , in which case
the log has a negative argument, the spectrum width
is set to 0 as is done on the WSR-88D.

The performance statistics obtained via simula-
tion for the short PRT (913 µs) R0/R1 spectrum
width estimator in the case of (essentially) no over-
laid echoes is shown in Figure 1 for various input
spectrum widths and SNRs. The biases are shown
in Figure1(a), and the standard deviation of the er-
rors Ŵs01 − W is depicted in 1(b). The error stan-
dard deviation plot agrees reasonably well with that
in Doviak and Zrnić (1993), although there are some
differences. These may be caused by different ap-
proaches to dealing with the cases where |R1| < PS ,
or to different methods used to generate time-series
segments for analysis. The biases and standard de-
viations show that for low SNRs (0 and 4 dB) this es-
timator is very poor, with large error standard devia-

tions and large and variable bias values. As SNR in-
creases to 10 dB and greater, the bias relative to the
input spectrum width improves dramatically for all
but rather small or quite large input spectrum widths,
and the error standard deviations improve for small
and, especially, medium spectrum width values. For
large input spectrum widths, the spectrum width es-
timator eventually saturates, as can be seen from
the increasing negative bias for all SNR levels.

b. The R1/R2 Pulse Pair Estimator

Another estimator described by Doviak and Zrnić
(1993) is the R1/R2 estimator, which is based on
the ratio of the first and second lags of the autocor-
relation function:

Ŵs12 =
(
2/

(
π
√

6
))

Va |log (|R1/R2|)|1/2 (2)

where R2 is the second lag of the autocorrelation
function (i.e. R2 = (n− 2)−1 ∑n−2

k=1 V ∗ (k) V (k + 2).
In the event that |R2| < |R1|, the spectrum width is
set to 0.

The performance statistics obtained via simula-
tion for the short PRT (913 µs) R1/R2 spectrum
width estimator in the case of (essentially) no over-
lay for various input spectrum widths and SNRs
is shown in Figure 2. The biases are shown in
Figure2(a), and the error standard deviation in 2(b).
The biases and error standard deviations show that
for 0 dB SNR this estimator is very poor, but the
performance for 4 dB is much improved over the
R0/R1 estimator. Again, there are biases for small
input spectrum widths, but the performance is sig-
nificantly better than the R0/R1 estimator in this
regime, particularly for SNRs of 10 dB or higher. In
fact, the estimator as a whole performs better than
R0/R1 until the input spectrum width approaches 8
m/sec. At that point the R1/R2 estimator saturates,
leading to severe negative biases.

c. The R1/R3 Pulse Pair Estimator

The R1/R3 estimator, is derived in the same way
that the above pulse-pair estimators. It is based on
the ratio of the first and third lags of the autocorrela-
tion function:

Ŵs13 = (1/ (2π))Va |log (|R1/R3|)|1/2 (3)

where R3 is the second lag of the autocorrelation
function (i.e. R3 = (n− 3)−1 ∑n−3

k=1 V ∗ (k) V (k + 3).
In the event that |R3| < |R1|, the spectrum width
is set to 0. This estimator behaves much like the
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(a) Bias of Ŵs01
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(b) Standard Deviation of Ŵs01

Figure 1: Bias and error standard deviation plots of the short PRT R0/R1 spectrum width estimator for
varying input spectrum widths and SNRs (0, 4, 10, 15 and 20 dB shown). The PR in this data is set at 30
dB, low enough such that the weak trip does not significantly impact the statistics.
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(a) Bias of Ŵs12
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(b) Standard Deviation of Ŵs12

Figure 2: Bias and error standard deviation plots of the short PRT R1/R2 spectrum width estimator for
varying input spectrum widths and SNRs (0, 4, 10, 15 and 20 dB shown). The PR in this data is set at 30
dB, low enough that the weak trip does not significantly impact the statistics.
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R1/R2 estimator except that it performs better at
very narrow spectrum widths, but also saturates
very quickly.

d. The PPLS2 Estimator

All of the above models assume that the autocorre-
lation function is a Gaussian, and this one does also.
In the above ones the fit of the Gaussian is exactly
determined by 2 points (lags). However, the pulse-
pair least squares estimator (PPLS2) uses 3 points,
lags 0, 1, and 2, and is thus over-determined. The
log of the autocorrelation function, if Gaussian, is a
concave-down quadratic, and thus a least squares
fit can be found efficiently. This estimator behaves
somewhere between the R0/R1 and the R1/R2, as
might be expected. It performs better than R0/R1
for narrow spectrum widths, although not as good
as R1/R2, and worse than R0/R1 for wide spec-
trum widths, although better than R1/R2.

4. A Hybrid Approach

The three estimators (Ŵs01, Ŵs12, and Ŵs13) each
performs well in certain regimes. Ŵs01 performs
well in higher SNRs and for larger spectrum widths,
whereas Ŵs12 performs well for slightly lower SNRs
and medium-valued spectrum widths. The estima-
tor Ŵs13 performs the best for very narrow spectrum
widths. These complementary regimes of relatively
good performance suggest that a hybrid approach
where the appropriate estimator is used depending
on the true (but unknown) spectrum width, might
achieve good overall performance. Because the
true spectrum width is unknown, a guess is made
by calculating different estimators (R0/R1, R1/R3,
and PPLS2) and then using a heuristic algorithm.
Once the decision (guess) is made whether the true
spectrum width is narrow, medium, or wide, then the
appropriate estimator (R1/R3, R1/R2, and R0/R1,
respectively) is used to calculate the final spectrum
width estimate.

a. Algorithm

• The spectrum width estimators Ŵs01, Ŵs13,
and ŴsPPLS2 are calculated.

• Based on n, the number of samples in the
time-series, a table lookup of the wide nor-
malized spectrum width threshold, wtw is per-
formed. By normalized we mean that the
spectrum width threshold must be multiplied

by Va in order to be directly compared to the
spectrum width estimators.

• If 1
2

(
Ŵs01 + ŴsPPLS2

)
> Vawtw then the

spectrum width is guessed to be large. In
which case, Ŵs01 is the final output.

• Otherwise, another table lookup is performed
(again based on n) to find the narrow normal-
ized spectrum with threshold, wtn.

• If Ŵs13 < Vawtn then the spectrum width is
guessed to be small. In which case, Ŵs13 is
the final output. For smaller values of n (n ≤
58), wtn is set to −1, in which case this com-
parison is always false, and the algorithm pro-
ceeds to the next step. This is done because
for smaller values of n, the capabilities of any
tested estimator (including Ŵs13) for discrimi-
nating between narrow and medium spectrum
widths is poor. Since it is better to guess that a
narrow spectrum width is medium-sized than
vice verse, the algorithm errs on the side of
guessing that the spectrum width is medium-
sized.

• Otherwise, the spectrum width is guessed to
be medium-sized. Ŵs12 is calculated and re-
turned as the final output.

In figure 3, the thresholds as a function of n are
shown. These thresholds were obtained in a au-
tomated way by running simulation data through a
classification decision tree. The costs associated
with misclassifications were set to reflect that guess-
ing that a spectrum width is too big is, in general,
better than guessing that a wide spectrum width is
narrow. This is true both from an estimator compar-
ison standpoint as well as from the fact that wide
spectrum widths are associated with hazards and
so occasional over-warning is generally better than
under-warning.

5. Results

Statistical comparisons of the R0/R1 estimator and
the proposed hybrid estimator are shown in figures
4 - 6 (for n = 38, 88, and 278, resp., with PRT of
780 µs). The left plots (a) show the results from the
R0/R1 estimator, and the right (b) shows those from
the hybrid estimator. As can be seen, there are sub-
stantial improvements, in both bias and standard de-
viation, for narrower spectrum widths. It would not



5

Figure 3: Plot of the thresholds (cutoffs) for narrow, medium, and wide spectrum widths as a function of
n, the number of pulses in the time-series. The cutoffs are normalized and so must be multiplied by the
Nyquist velocity to be compared to the estimators. The upper cutoff is compared first to the average of
the PPLS2 and R0/R1 estimators. If the spectrum width is deemed not wide, then the R1/R3 estimator is
compared to the lower cutoff to determine if the spectrum width is narrow.
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(a) Bias and Std of Ŵs01 (b) Bias and Std of Ŵhyb

Figure 4: Bias and error standard deviation plots of the R0/R1 (a), and hybrid (b) spectrum width estimators
for varying input spectrum widths and SNRs (5, 10, and 20 dB) as a function of true input spectrum width.
The number of samples per time-series is 38 and the PRT is 780 µs. The biases are shown in the top
panels and the standard deviations are shown in the bottom panels.

be expected to see improvements for larger spec-
trum widths because the R0/R1 is used in the hy-
brid estimator for wide spectrum widths because it
performs the best of all the estimators tested in that
regime.

Another way of comparing the performance of
the two estimators is via 2-D histograms of true in-
put spectrum width versus the output from the es-
timators. This is similar to a scatter plot compar-
ison of the data. These are shown in figures 7 -
9, with the left plots (a) again showing the results
from the R0/R1 estimator, and the right (b) show-
ing those from the hybrid estimator. The simulation
parameters are the same as the above results, but
focused solely on a SNR of 20 dB. As can be seen,
the hybrid again performs better than R0/R1 for the
narrower spectrum widths. It is possible to see a
few more outliers, especially for n = 38 (figure 7)
around an input width of 10 m/s. This is caused by
wide spectrum widths being wrongly diagnosed as
medium-sized. However, the number of outliers is
quite small.

6. Conclusions

The simulation results presented in this paper have
shown that the R0/R1 spectrum width estimator
currently used on WSR-88Ds does not perform as
well as the R1/R2 estimator or R1/R3 estimator in
certain regimes. A hybrid approach that combines
these methods using weights appropriate to each
regime shows great promise in producing improved
overall performance. While knowledge of the true
spectrum width would allow determining the ideal
estimator, an alternative that uses spectrum width
estimates to try to decide the general magnitude of
the true spectrum width was proposed as a practical
alternative. The hybrid estimator presented in this
paper was shown to outperform all three spectrum
width estimators in most cases, and at the least did
no worse than the R0/R1 estimator currently used
by the WSR-88D. For larger spectrum widths, it out-
performs the R1/R2 and R1/R3 estimators. Com-
putationally, the hybrid algorithm is fairly modest, re-
quiring fewer operations than the FFT needed by a
spectral technique.

Future work includes improving the performance
for small spectrum widths, where the less than opti-
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(a) Bias and Std of Ŵs01 (b) Bias and Std of Ŵhyb

Figure 5: Bias and error standard deviation plots of the R0/R1 (a), and hybrid (b) spectrum width estimators
for varying input spectrum widths and SNRs (5, 10, and 20 dB) as a function of true input spectrum width.
The number of samples per time-series is 88 and the PRT is 780 µs. The biases are shown in the top
panels and the standard deviations are shown in the bottom panels.

mal quality seems to be due to the wrong decision
about the general size of the true spectrum width.
In addition, other spectrum width estimators such as
spectral or maximum likelihood methods could eas-
ily be integrated into the general framework devel-
oped here, and this hybrid approach can be applied
to other VCPs including those that involve phase-
coded signals.
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(a) Bias and Std of Ŵs01 (b) Bias and Std of Ŵhyb

Figure 6: Bias and error standard deviation plots of the R0/R1 (a), and hybrid (b) spectrum width estimators
for varying input spectrum widths and SNRs (5, 10, and 20 dB) as a function of true input spectrum width.
The number of samples per time-series is 278 and the PRT is 780 µs. The biases are shown in the top
panels and the standard deviations are shown in the bottom panels.

(a) Ŵs01 (b) Ŵhyb

Figure 7: 2-D Histograms of true input spectrum width versus R0/R1 (a) and hybrid (b) estimators. The
color corresponds to the frequency counts within the bins. Note that the color scale is logarithmic. The
white line is the 1-to-1 line, the black line show follows the mean for each “column”, and the dashed white
line corresponds the standard deviation for each “column”. The number of samples per time-series is 38
and the PRT is 780 µs. The biases are shown in the top panels and the standard deviations are shown in
the bottom panels.
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(a) Ŵs01 (b) Ŵhyb

Figure 8: 2-D Histograms of true input spectrum width versus R0/R1 (a) and hybrid (b) estimators. The
color corresponds to the frequency counts within the bins. Note that the color scale is logarithmic. The
white line is the 1-to-1 line, the black line show follows the mean for each “column”, and the dashed white
line corresponds the standard deviation for each “column”. The number of samples per time-series is 88
and the PRT is 780 µs. The biases are shown in the top panels and the standard deviations are shown in
the bottom panels.

(a) Ŵs01 (b) Ŵhyb

Figure 9: 2-D Histograms of true input spectrum width versus R0/R1 (a) and hybrid (b) estimators. The
color corresponds to the frequency counts within the bins. Note that the color scale is logarithmic. The
white line is the 1-to-1 line, the black line show follows the mean for each “column”, and the dashed white
line corresponds the standard deviation for each “column”. The number of samples per time-series is 278
and the PRT is 780 µs. The biases are shown in the top panels and the standard deviations are shown in
the bottom panels.


