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ABSTRACT 
 

 Low resolution verification data, as available from the Storm Data database, has 
hindered the development and evaluation of high resolution hail algorithms as well as the 
assessment of hail forecasting techniques.  Previous studies have highlighted the 
inadequacies and inaccuracies associated with this verification data.  This study uses 
high resolution ground-truth hail verification data from the Severe Hazards Analysis and 
Verification Experiment (SHAVE) to evaluate gridded synthetic hail verification and 
different radar derived parameters used in predicting severe hail. 
 MESH is found to have limited skill as a synthetic verification tool due to a high 
probability of false detection and a wide distribution of MESH values for each reported 
hail size range.  In addition, radar-derived parameters are found to provide little skill in 
the prediction of severe hail as the probability of false detection associated with these 
parameters leads to low skill scores.  The predictive skill of these parameters is also 
found to decrease with time, limiting the lead time in which skillful prediction of severe 
surface hail fall is possible using radar derived parameters. 

 
 

 
1.   INTRODUCTION 
 
Large hail places both human safety and 
economic interests at risk.  A single hailstorm 
can cause substantial damage to property, and 
can put individuals in its path at risk of injury.  
The ability of forecasters to accurately warn of 
potentially destructive hail and to provide 
warnings with meaningful lead time is of great 
importance.  Forecasting techniques and hail 
diagnosis algorithms have been developed to 
facilitate forecasters’ needs for severe hail 
guidance.  
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Witt et al. (1998) noted that efforts to evaluate 
hail forecasting techniques and algorithm 
performance have been hindered in the past by 
low resolution ground-truth  
verification data.  Trapp et al. (2006) also 
documented Storm Data deficiencies.  In 
addition, the National Weather Service (NWS) 
has moved from county-based warnings to 
polygon warnings, and currently, adequate 
verification data does not exist to score the 
accuracy of the geographic bounds of these 
polygon warnings.  High resolution hail data 
from the Severe Hazards Analysis and 
Verification Experiment (SHAVE) (Smith et al. 
2006) is utilized here to evaluate the feasibility of 
using the Maximum Expected Hail Size (MESH) 
algorithm as a synthetic verification tool as well 
as to evaluate the predictive skill of radar-
derived parameters.   



 

 

FIG. 1. Average hail size for each MESH threshold (at 1 mm increments) across all reports.  The number of hail 
reports at each threshold is plotted.  3921 total reports are included (1539 severe/2382 non-severe).    
 
 
2.   HAIL DIAGNOSIS TECHNIQUES 

 
Various methods have been employed over the 
years to forecast severe hail (>19 mm) in a 
dichotomous yes/no manner as well as to estimate 
the maximum hail size that can be expected at the 
surface.  Donaldson (1959) investigated the 
relationship between the maximum height of storm 
echo tops and whether surface hail fall was 
reported.  Geotis (1963) noted that sustained 
levels of enhanced radar reflectivity were related 
to maximum hail size.  Greene and Clark (1972) 
stated that more intense radar returns caused by 
hailstones aloft could lead to vertically integrated 
liquid (VIL) values in excess of those calculated in 
the absence of hailstones.  They noted this VIL 
discrepancy could be used as a means of 
assessing the severity of storms.   
 
 
 

 
Edwards and Thompson (1998) investigated the 
usefulness of VIL in predicting hail severity.   
Though they found that large hail is not likely to be 
associated with low VIL values, they also showed 
high VIL values do not guarantee large surface 
hail fall.  Their statistical results, coupled with the 
difficulties in calculating VIL within a radar’s cone 
of silence, for fast moving storms, and for strongly 
tilted storms, suggest that VIL-based products are 
not skillful in predicting severe hail. 

 
The WSR-88D hail detection algorithm (HDA) 
provides information regarding the probability of 
hail, probability of severe hail (POSH), and the 
maximum expected size of hail (MESH) (Witt et al. 
1998).  The HDA uses two weighting functions, 
one which weights reflectivity values and one 
which weights the heights of reflectivity values with 
respect to freezing level heights.  Vertical 
integration of these weighting functions yields the 
severe hail index (SHI).  Both MESH and POSH 
are derived products from the SHI.  The HDA 



 

 

calculates the probability of hail based on the 
height of the 45-dBZ echo above the melting level.  
The POSH involves a thermal weighting in which 
echoes of 50-dBZ and greater above the -20C 
isotherm are weighted the greatest, and echoes 
less than 40-dBZ or below the melting level 
receive zero weight.   
 
Donovan and Jungbluth (2007) showed that for 
severe hail, an increasing 50-dBZ echo height is 
required as the height of the melting level 

increases.  They suggested that the height of the 
50-dBZ echo indicates updraft strength, while the 
height of the melting level provides information 
about the environmental thermal profile, and they 
note that use of the 50-dBZ criterion may increase 
lead time by removing the delay associated with 
the calculation of volume-derived products such as 
VIL. 
 
 

 
 
 

 
Fig. 2. MESH values associated with each reported hail size from SHAVE show the distribution of reported hail sizes 
for each MESH threshold (at 1 mm increments).
 
 
3.   METHOD 

 
One goal of this study was to evaluate gridded hail 
size prediction (Stumpf et al. 2004) as a synthetic 
verification tool.  Initially, MESH swaths were 
plotted with SHAVE hail reports overlaid.  The  
 

 
MESH swaths were comprised of the temporal 
maximum MESH value at each location.  The 
MESH values were compared to the SHAVE 
reports on a point-by-point basis.  Figure 1 shows 
the average hail size reported for each MESH 
threshold, and Figure 2 shows the MESH 
distribution for each reported hail size.    
 



 

 

Next, MESH values were incremented at 1 
millimeter size steps and compared to SHAVE 
reports at each location.  Incrementing began at a 
MESH threshold of 0 mm and continued through 
an upper bound of 51 mm.  MESH values at or 
above each threshold at each point were 

considered “yes” forecasts for severe hail.  Figure 
3 shows how this scoring was done.  The ability of 
each MESH threshold to verify severe surface hail 
fall was evaluated.  The results of this evaluation 
were used to populate a 2 x 2 contingency table 
with hits, misses, false alarms, and correct nulls.   

 
 
 

 
 
FIG. 3. MESH swath with SHAVE hail reports overlaid.  Each small H corresponds to a SHAVE report.  The orange 
outline represents a MESH threshold, and everything inside the contour is a “yes” forecast for severe hail.  Severe 
hail reported in this region results in a hit (H) and severe hail reported outside of this region results in a miss (M).  
Non-severe hail inside the contoured region results in a false alarm (FA) and outside the region results in a correct 
null (CN).  The MESH threshold is then incremented 1 mm at a time and similar scoring is done for each threshold. 
 
 
 
 
 

 
 
 



 

 

Skill scores were then calculated in order to 
evaluate the use of MESH as a synthetic 
verification tool.  The Critical Success Index (CSI) 
(Donaldson et al. 1975) was initially computed.  
CSI is a biased score which does not take into 
account correct forecasts of null events, and as a 
result is dependent on the frequency of severe hail 
fall events.  The True Skill Statistic, or the 
difference between the probability of detection 
(POD) (Donaldson et al. 1975) and the probability 
of false detection (POFD) (Flueck 1987), and the 
Heidke Skill Score (Heidke 1926) were determined 
as well.  The POFD is the ratio of the number of 
times an event does not occur when a “yes” 
forecast is made to the total number of times an 
event does not occur.   

 
In order to evaluate the predictive skill of radar-
derived parameters, SHAVE hail reports were 
gridded and compared to those parameters.  
Radar data and products such as MESH, VIL, 
POSH, reflectivity at isothermal levels, and height 
of reflectivity values above isothermal layers were 
also gridded.  K-means clustering (MacQueen 
1967) was used to identify storm cells on the grid 
and to gather storm attributes for each cluster.  A 
cluster table was constructed relating the various 
parameter values at each grid location to the 
SHAVE hail reports.  The maximum observed hail 
size in each cluster was recorded as well.  K-
means determined storm motions associated with 
each cluster, and time trends of various 
parameters were determined by advecting the 
clusters back along motion vectors by the desired 
number of frames and gathering the data values 
encompassed by the cluster at that time frame.   

 
Figure 4 shows how lag values of each parameter 
were obtained.  To attain lag values, the attributes 
of each storm of interest were retrieved from one 
time step earlier to yield lag 1 data, from two time 
steps earlier to yield lag 2 data, etc.  For each 
parameter, lower and upper threshold bounds 
were specified.  The threshold values between 
these bounds at each lag were used to evaluate 
the predictive skill of these parameters by 
calculating skill scores at each of 9 lags, with each 
lag step being approximately 5 minutes in length.  
Parameter values at or above the threshold value 
at each increment resulted in a “yes” forecast for 
severe hail.  Our evaluation was based on each 
parameter’s skill in predicting severe hail.  The 
skill of radar-derived parameters to more narrowly 
predict hail size beyond a severe/non-severe 
forecast was not assessed. 
 

4.   DATA 
 
In this study, SHAVE hail reports were used.  The 
objective of SHAVE is to gather high resolution 
hail, wind, and flooding data in space and time 
(Smith et al. 2006).  Most importantly, SHAVE 
data also provides “no hail” reports and non-
severe hail reports which is information not usually 
available using current climatological data. 
  
Only isolated storms in the SHAVE database were 
selected to ensure that hail reports from multiple 
storm cells did not contaminate our analysis.  A 
null case was selected which included multiple 
reports of no hail or non-severe hail as well.  For 
the evaluation of MESH as a synthetic verification 
tool, 3921 reports were used (1539 severe/2382 
non-severe), and 563 total reports (325 
severe/238 non-severe) went into the evaluation of 
the predictive capability of radar-derived 
parameters.  It is important to remember that even 
though SHAVE data is higher resolution, the 
possibility still exists that the largest hail size at a 
given location is either missed or incorrectly 
estimated. 
 
 
 

 
FIG. 4. This figure illustrates the method used to obtain 
lag values of parameters.  “ID” is an identification 
number assigned to each cluster which allows the 
cluster to be tracked through time.  T=0 represents 
“current” time, while T=-1 and T=-2 represent one and 
two lag steps back in time respectively.  Each lag is 
approximately 5 minutes in length.   
 
 
5.   RESULTS 

 
5.1   Gridded Synthetic Verification 
 
Initially, a simple evaluation of the performance of 
MESH as a synthetic verification tool was 



 

 

 
FIG. 5. Plotted are the probability of detection (POD), probability of false detection (POFD), false alarm ratio (FAR), 
Critical Success Index (CSI), Heidke Skill Score (HSS), and True Skill Statistic (TSS) for each MESH threshold from 
0-51 mm.  Scores are based on whether the MESH threshold can be used to create a binary hail prediction. 
 
 
conducted by comparing the average size of 
SHAVE hail reports to maximum MESH values at 
each report location.  The average hail size report 
for each MESH value with a y = x line overlaid is 
shown in Figure 1.  The number of SHAVE reports 
that went into the calculation of each average is 
plotted for each data point as well.  A bias of 9.28 
mm and a root mean squared error of 20.34 mm 
were calculated.  This bias suggests MESH 
usually overestimates the maximum size of hail 
that will reach the earth's surface.  MESH is 
designed such that approximately 75% of hail will 
be smaller than the MESH (Witt et al. 1998), but 
the SHAVE reports being used represent the 
largest hail size reported at each given location so 
the relationship should ideally be one-to-one, and 
the curve should fall along the y = x line which is 
not what we discovered. 

 
The distribution of hail sizes for each MESH value 
(at 1 mm increments) is shown in Figure 2.  The 
spread of reported hail sizes that correspond to 
each MESH value is large.  Hail reports ranging 
from 0 mm to 70 mm correspond to most 

individual MESH values between 0 mm and 60 
mm.  For instance, hail sizes of both 0 mm and 70 
mm correspond to MESH of 15 mm.  Many of the 
hail sizes between 0 mm and 60 mm correspond 
to 15 mm MESH as well, including other reports 
well in excess of 15 mm.  This demonstrates that 
the 70 mm report is not simply an isolated event 
that stands out as an outlier.  This distribution of 
hail sizes for each MESH value suggests that 
solely using MESH as a synthetic verification tool 
is not a feasible option. 
  
The skill scores calculated by scoring how well a 
MESH threshold verifies severe hail on a point-by-
point basis also suggest MESH should not be 
used alone as a means of synthetic verification.  
These skill scores are displayed in Figure 5.  The 
Critical Success Index (CSI) peaks at a value of 
0.46 at a MESH threshold of 23 mm.  The Heidke 
Skill Score (HSS) and True Skill Statistic (TSS) 
both peak at 0.37 at a threshold of 28 mm.  At the 
28 mm threshold, the POD is 0.62 and the POFD 
is 0.25.  At the threshold for severe sized hail (19 
mm), the POFD is 0.51, and the HSS is only 0.27. 



 

 

 
 

 
FIG. 6  (a) Skill score plot evaluating the skill of maximum MESH thresholds to predict severe hail at lag 1 (~5 
minutes lead time); (b) same as (a) but at lag 2 (~10 minutes lead time). 
  



 

 

These results confirm what was hypothesized from 
Figure 2, that the skill of MESH to determine 
locations of severe hail fall is greatest at MESH 
values greater than 19 mm.  The low HSS and 
TSS values at all thresholds are a result of the 
high probability of false detection.  The relatively 
low skill score values also suggest that MESH 
alone, while providing some skill, is not an 
adequate tool for synthetic verification. 
 
5.2   Prediction Using Radar Derived 
Parameters 
 
Time series analysis of radar-derived parameters 
was performed by comparing time trends of 
parameter values at different lags to hail reports.  
This analysis revealed little to no predictive skill 
associated with using time trends to predict severe 
hail. 

 
The ability of radar-derived parameters to predict 
severe hail was determined by again calculating 
skill scores.  The skill scores computed for the 
radar-derived products as well as the maximum 
MESH in each cluster at each of nine different lags 
suggest that the predictive skill of these 
parameters is limited.  Looping from lower to 
upper bounds of each parameter and incrementing 
to incorporate intermediate values provided 
thresholds of each parameter at each of nine lags.  
The parameter values were then compared to the 
SHAVE reports on a point-by-point basis for each 
lag, and were scored based on their skill in 
predicting severe/non-severe hail at the surface.  
Plots were constructed to allow for visualization of 
the results.  In no instance (any threshold at any 
lag) did the HSS exceed 0.5.  Skill scores for 
maximum VIL, maximum MESH, and maximum 
height of 50-dBZ echo above the environmental 
melting level are shown.  These were chosen as 
MESH is a newer tool still needing evaluation, and 
maximum VIL and the maximum height of 50-dBZ 
echoes above the melting level are commonly 
used to diagnose and predict severe hail 
operationally. 
 
a. Maximum MESH 
 
The maximum MESH in each cluster was 
increased at 1 mm increments from 0 mm to 51 
mm over nine lag steps.  Each lag represents 

approximately five minutes lead time.  Figure 6a 
shows the skill of maximum MESH at lag 1 to 
predict severe hail was greatest for the 23 mm 
MESH threshold.  At this threshold, the POD was 
0.92, but the HSS was only 0.32.  The HSS was 
low as a result of the POFD being high at 0.48.  
The HSS drops markedly on either side of the 23 
mm peak value.  Figure 6b shows at lag 2 the 
HSS again peaks at a MESH threshold of 23 mm 
and has increased to 0.45 with a POD of 0.93.  
This threshold/lag pair yields the greatest 
predictive skill score using maximum MESH to 
predict severe hail fall.  The POFD at the 23 
mm/lag 2 pairing is 0.5.  This lag would provide 
about ten minutes lead time.  The HSS for lags 3 
through 9 remains below the lag 2 value and 
decreases with increasing lead time.  The low skill 
scores across all lags and all thresholds of 
maximum MESH suggest maximum MESH 
provides limited skillful predictive capability. 
 
b. Maximum VIL 
 
Our results support the conclusions of Edwards 
and Thompson (1998) who stated that VIL offered 
little predictive skill.  Here, maximum VIL was 
increased at 1 2−kgm increments from 0 2−kgm to 

65 2−kgm  over the same nine lags as used for 
maximum MESH.  The skill score results for using 
maximum VIL in severe hail prediction were the 
lowest of those for the three predictive parameters 
focused on in this paper.  Figure 7 shows the lag 1 
HSS peak of 0.31 occurred at 37 2−kgm  and 
corresponded to a POD of 0.84.  The POFD at this 
point was 0.5.  At lags 2 and 3, the HSS peak 
dropped to 0.25 at a threshold of 46 2−kgm .  
Remaining lags yield HSS below 0.2.  The decline 
in HSS values across all lags between thresholds 
of 30 2−kgm  and 35 2−kgm  is likely attributable to 
insufficient data.  Our skill score results show that 
maximum VIL cannot consistently be used to 
skillfully predict severe surface hail fall with 
meaningful lead time.  Issues associated with VIL 
calculation, including inadequate sampling of 
storms in a radar’s cone of silence, fast moving 
storms, and strongly tilted storms, likely decrease 
the predictive skill of maximum VIL.  



 

 

 
FIG. 7. Skill score plot evaluating the skill of maximum VIL thresholds to predict severe hail at lag 1 (~5 minutes lead 
time). 

 
FIG. 8. Skill score plot evaluating the skill of threshold values of maximum height of 50-dBZ echo above the 
freezing level to predict severe hail at lag 1 (~5 minutes lead time). 



 

 

 
c. Maximum Height of 50-dBZ echo above 0C 
 
Evaluation of the predictive skill of the maximum 
height of the 50-dBZ echo above the melting level 
in predicting severe hail reveals a predictive 
capability similar to that of maximum MESH.  This 
parameter was incremented between 0 km and 10 
km using a 0.5 km step size.  Figure 8 shows a 
CSI peak of 0.85 and HSS peak of 0.44 occur at 
lag 1 at a threshold of 4.5 km.  The POD is very 
high at this threshold at 0.95, but the POFD is also 
high at 0.57.  At lags 2 and 3, the HSS drops to 
0.40 and 0.38 at a threshold of 4.5 km.  At both of 
these lags, the POFD at the 4.5 km threshold at 
which HSS is maximized is above 0.60.  The HSS 
continues to drop over lags 4 through 9.  Again, 
low HSS values suggest that the maximum 50-
dBZ echo height above 0C provides only limited 
skill in the prediction of severe surface hail fall. 
 
6.   CONCLUSIONS 
 
SHAVE data offers a high resolution alternative to 
the low resolution hail verification data found in the 
Storm Data database.  The enhanced temporal 
and spatial resolution of SHAVE data makes the 
evaluation of hail forecasting techniques and high 
resolution hail algorithms more complete.  SHAVE 
data also includes reports of “no hail” as well as 
non-severe reports which make more 
comprehensive evaluation possible. 
 
The relatively low skill scores computed in 
evaluating the ability of MESH to verify severe hail 
at the surface, as well as the distribution of MESH 
values for each reported hail size range, 
demonstrate that using MESH alone is not a 
feasible option for use as a synthetic verification 
tool.    
 
Analysis of lag values of radar-derived parameters 
reveal that such parameters, across all thresholds 
at each of nine lags, offer limited skill in predicting 
severe hail fall at the surface.  The probability of 
false detection associated with the predictions 
made by these parameters is often high and 
probably leads to low HSS and TSS values.  Time 
trend analysis also shows that time trends in 
radar-derived parameters offer little skill in 
predicting severe hail. 
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