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1. INTRODUCTION 
 
 Satellite-based estimates of rainfall can 
provide critical information to operational 
forecasters by supplementing data from gauges 
and radar.  Although microwave (MW)-based 
estimates of rainfall are more accurate than their 
infrared (IR)-based counterparts, they lack the 
rapid refresh, high spatial resolution, and short 
data latency time that are critical for operational 
forecasters.  In response, the Self-Calibrating 
Multivariate Precipitation Retrieval (SCaMPR; 
Kuligowski 2002) was developed to provide 
products that possessed the high spatial resolution 
and timeliness available from geostationary data 
but incorporated the higher degree of accuracy 
available from MW-based estimates. 
 
 The SCaMPR algorithm, which has run in real 
time over the CONUS (20-60°N, 135-60°W) since 
November 2004, selects and calibrates predictors 
from the Geostationary Operational Environmental 
Satellite (GOES) Imager against MW rain rates 
from the Special Sensor Microwave / Imager 
(SSM/I; Ferraro 1997) and the Advanced 
Microwave Sounding Unit (AMSU; Vila et al. 
2007).  Calibration involves selecting the optimal 
predictors and optimizing their calibration 
coefficients, and occurs in two steps: rain / no rain 
discrimination (via discriminant analysis) and rain 
rate retrieval (via stepwise linear regression).  The 
currently used GOES predictors are GOES bands 
3 (T3; 6.7 µm on GOES-11 and 6.5 µm on GOES-
12); 4 (T4; 10.7 µm), 5 (T5; 12.0 µm on GOES-11 
and earlier), and 6 (T6; 13.3µ m on GOES-12 and 
later), all band-to-band brightness temperature 
differences (BTD’s), and texture variables based 
on band 4. 
 
2. ALGORITHM CHANGES 
 
 A number of enhancements to SCaMPR have 
been tested and are in the process of being 
incorporated into the real-time version of the 

algorithm, including an improved MW calibration 
data set, a classification scheme based on T3-T4, 
adding visible (VIS) data, and modifying the 
calibration regions. 
 
2.1. MW Calibration Data Set 
 
 As previously noted, the current real-time 
version of SCaMPR is calibrated against rain rates 
from the SSM/I and AMSU; however, there is no 
attempt to intercalibrate or bias-correct these 
estimates except for a static multiplier of 0.85 
applied to the SSM/I rain rates to make their 
distribution more closely match that of the AMSU. 
 
 In a variant of the work of Joyce et al. (2004), 
the rain rate pixels from these instruments are 
matched with Tropical Rainfall Measuring Mission 
(TRMM) Microwave Imager (TMI) rain rates 
(Kummerow et al. 2001), cumulative distribution 
functions (CDF’s) are constructed for the separate 
rain rates, and then the CDF’s are matched to 
create a lookup table (LUT) for adjusting SSM/I 
and AMSU rain rates to have the same statistical 
distribution as TMI.  The LUT is based on the 
previous 30 days of matched data and is updated 
daily.  In addition, the TMI and TRMM Precipitation 
Radar (PR) rain rates (Iguchi et al. 2000) were 
added to the SCaMPR calibration data set. 
 
 The new MW calibration data set surprisingly 
had little overall impact on the accuracy of the 
SCaMPR estimates.  However, preliminary results 
from the second half of 2007 indicate that while 
the warm-season wet bias was slightly higher 
using the new MW calibration data, the bias during 
the transition and cool season increased 
significantly; the cause for this is still under 
investigation. 
 
2.2. Calibration Regions 
 
 Other investigators (e.g., Turk et al. 2003) 
have found that a regional calibration produces 
better results than a global calibration, so 
SCaMPR was implemented with separate 
calibrations for 15x15-degree lat/lon regions.  To 
prevent discontinuities at the seams between 
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regions, SCaMPR overlapped the calibration 
regions by 10 degrees, leading to 9 separate 
calibrations and rain rate estimates for each pixel 
that were then distance-weighted to produce the 
final result. 
 
 However, this choice was not rigorously 
tested, and studies using Spinning METEOSAT-8 
Enhanced Visible Infrared Imager (SEVIRI) data in 
support of GOES-R development work showed 
that there was no benefit beyond dividing the 
coverage area into 30-degree latitude bands.  
Similar results were found for tests with GOES 
data, so the real-time algorithm will be modified to 
use the larger calibration areas (there will actually 
be four calibration regions, with 105 W as the 
divider between GOES-West and GOES-East).  A 
comparison of the rain rate estimation skill for July 
2007 against microwave rain rates is shown in Fig. 
1 (black line vs. red line). 

 
2.3. Classification Scheme 
 
 Previous authors (e.g., Tjemkes et al. 1997) 
have showed that water vapor band (~6.7 µm) 
brightness temperatures exceeding the IR window 
band (~11 µm) brightness temperature indicate 
regions of deep convection.  A comparison of the 
best-fit regression line of T4 against rain rate for 
various values of T3-T4 show that the relationship 
between T4 and rain rate is very weak for low 
values of T3-T4 and stronger for higher values of 
T3-T4 (Fig. 2), as expected.  The transition region 
is rather broad, but a demarcation line of -3 K for 

GOES-12 and -2 K for GOES-11 produces the 
best results during testing.  Using separate 
calibrations for these two BTD regimes produced 
additional improvement in the retrievals for 
moderate to heavy rain rates, but some 
degradation for very light rain rates (Fig. 1).  
However, the higher rain rates are more critical for 
flood forecasting, so this is an acceptable 
compromise. 
 
2.4. Visible data 
 
 Numerous authors (e.g., Griffith et al. 1978) 
have demonstrated the utility of visible data in 
discriminating raining cumulonimbus clouds from 
nonraining cirrus clouds, both of which appear 
cold in IR imagery.  Tests on SEVIRI for GOES-R 
development work showed an improvement in 
SCaMPR skill when VIS data were added, even 
though this required separate calibrations for the 
daytime and nighttime (the latter used data from 
both day and night for calibration but did not 
include any bands with significant solar 
components).  Related tests on GOES data also 
revealed some improvement for rain / no rain 
separation and very light rain events.   
 
 In light of the work by Rosenfeld and Gutman 
(1994) relating the reflectance at 3.9 µm to cloud-
top properties, the impact of using this band in 
SCaMPR was tested, first on SEVIRI data and 
then on GOES data.  However, there was no 
additional impact beyond that from using the VIS 
data in SCaMPR.  
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Fig 1. Heidke Skill Score as a function of rain rate 
threshold for the current version of SCaMPR (black 
line), with the region boundaries at 30 N and 105 W 
(red), with the T3-T4 classification scheme added (blue), 
and with visible data added to a separate daytime 
calibration (green). 
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Fig. 2.  Slope (and correlation) of the best-fit regression 
line between T4 and microwave rain rate as a function of 
T3-T4.  Vertical blue and red dashed lines indicate the 
selected threshold values for GOES-12 (-3 K) and 
GOES-11 (-2 K), respectively. 



3. FUTURE WORK 
 
 These modifications are in the process of 
being implemented into the real-time version of 
SCaMPR and should be in place by the spring of 
2009.  Tests are also being performed to test the 
potential utility of using precipitable water (PW) 
and / or relative humidity (RH) data from numerical 
weather models to correct for subcloud 
evaporation and moisture availability as is done in 
the operational Hydro-Estimator (H-E) algorithm at 
NESDIS (Scofield and Kuligowski 2003).  The new 
version of SCaMPR will be tested against the 
operational H-E to determine if it might be suited 
for operational implementation at NESDIS. 
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