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1. INTRODUCTION  
 
In the event of a hazardous release of a toxic 

contaminant, atmospheric transport and dispersion 
(AT&D) models are critical to quickly and accurately 
predicting hazard areas that might be affected. AT&D 
models require accurate source term information as well 
as meteorological input data such as wind speed and 
direction. While meteorological data is routinely 
available from land surface stations, it is likely to be 
sparse, may not be representative of specific locale or 
current time, and can also contain errors. Such 
inaccuracies can produce a large impact on the 
accuracy of concentration predictions. Data assimilation 
provides a strategy to make the most effective use of 
the available data in an efficient manner, thus providing 
emergency managers with timely, accurate information. 
 Figure 1 illustrates the problem.  In the left pane, a 
toxic contaminant event has occurred. The wind 
direction is uncertain; therefore, the hazard area (light 
grey) initially predicted is relatively wide.  However, the 
concentration measurements from the surrounding 
sensors provide information to narrow the prediction.  
Note that the null sensor data provides useful 
information to fine-tune the hazard area.  Not only has 
the concentration prediction been narrowed, conserving 
sparse resources, but the sensor information has 
refined the estimate of the most probable wind direction, 
so that the next time’s prediction is more accurate (right 
pane).  As that time is realized, further sensor data 
again helps to fine-tune the direction and the extent of 
the hazard region. 

For dispersion problems, forecasting the transport 
and dispersion of a contaminant requires knowledge of 
a coupled system: the wind field providing the transport 
and a concentration equation predicting the dispersion. 
For this problem the coupling is one way: the wind field 
drives the concentration field but the concentration field 
has no direct impact on the resulting wind field. Both 
models are described in the following sections.  
 The goal of this paper is to demonstrate a 
technique to assimilate sensor data to improve the 
concentration predictions.  This method uses a genetic 
algorithm (GA) to identify the characteristics of the 
dispersion realization that is occurring (including wind 
data), then to back-calculate the best modeling 
parameters so that the predicted concentration field best  
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Figure 1. Schematic indicating the usefulness of 
assimilating sensor data to refine hazard area 
predictions. 

 
matches the observed concentrations. It is akin to the 
variational methods of data assimilation because the 
method optimizes a minimization problem.  Thus, we 
refer to this method as GA-Var. 

 
2. ASSIMILATION FOR DISPERSION 

 
2.1 Mathematical Formalism 

 
The assimilation problem can be posed as a 

dynamical system as: 
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where x represents the predictands (concentration and 
wind), 
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∂
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x  is their time rate of change or tendency, M is 

a linearized operator based on the potentially nonlinear 
dynamics, and η  is a stochastic noise term 
incorporating the errors in the model and the unresolved 
subgrid processes. 

The assimilation process can be expressed as 
adding a term to the system that acts to force the 
system toward the observations:   
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where is the observed value of the field and is the 
forecast field. Here G is the adjustment function.  
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Forecasting the transport and dispersion of a 
contaminant requires a set of coupled systems: a wind 
equation and a concentration equation. This system is 
coupled one-way: the transport equations influence the 
dispersion equation but the concentration equation has 
no direct impact on meteorological transport.  

Equation (2) can be written for the transport and 
dispersion problem by separating it into one equation for 
the wind field and another for the concentration 
equation:  
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Figure 2 demonstrates the concentration 
assimilation procedure using a GA.  An AT&D model 
makes an initial prediction of the concentration.  This 
prediction is compared to an observed concentration 
field.  The difference is the innovation vector that can be 
used to evolve a better guess for the modeling variables.  
The process to improve those variables used here is the 
GA-Var method, which uses a genetic algorithm to 
directly optimize the modeling variables.  The genetic 
algorithm works by initially “guessing” model variables in 
the prescribed range, applying the operations of mating 
and mutation to produce new variables that combine the 
information from the previous generation while 
continuing to generate new “guesses”, then uses a cost 
function to determine whether the new variables have 
improved the solution.  The process iterates through a 
number of generations until converging on an improved 
solution.  The updated modeling variables then provide 
a better prediction for the next time.  The process 
iterates dynamically as new data becomes available for 
the assimilation.  The genetic algorithm has been 
applied to assimilation-type problems in various 
publications (Haupt 2005; Haupt et al. 2006, 2007, 2008, 
2009 a,b;  Allen et al. 2007a,b; Long et al. 2008; 
Rodriguez et al. 2008). 

 
where  denotes a continuous two- or three-
dimensional wind field, and C is the two- or three-
dimensional concentration field (a single nonreactive 
species is assumed). Subscripts v  and C on the two 
dynamics operators, and , denote separation 
into a wind operator and a concentration operator. Both 
adjustment functions depend on the meteorological data 
forecasts and observations and also on the 
concentration forecasts and observations. The wind 
equation (3) depends on the previous state of the wind 
field and the concentration equation (4) depends on the 
previous state of the concentration field.  The indirect 
impact is through the adjustment function 

. Both adjustment functions in (3) 
and (4) depend on the forecast (superscript f) and the 
observations (superscript o) of both the wind and the 
concentration fields. The wind field is altered according 
to the innovation between the observed and forecast 
wind fields, plus includes information on the innovation 
of the concentration field from that forecast. Similarly, 
the concentration adjustments depend on wind field 
innovations as well as concentration innovations.  This 
system is dynamic, coupled, and nonlinear. Thus the 
coupled systems interact through their adjustment 
functions.   
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2.2 Assimilation with a Genetic Algorithm 
 

Using the GA-Var assimilation method, we seek to 
directly optimize the wind direction to produce a 
predicted concentration field closest to that monitored. 
This method is most akin to the variational approaches 
to assimilation (for example see Sasaki 1970 or Kalnay 
2003), but rather than using the variational formalism, it 
directly optimizes the match. We choose the continuous 
genetic algorithm (GA) as our optimization tool. The GA 
is an artificial intelligence optimization method inspired 
by the biological processes of genetic recombination 
and evolution. It begins with a population of potential 
solutions and evolves them closer to the correct solution 
through the implementation of mating and mutation 
operators. The GA in general, and the continuous 
parameter version used here, is described in detail by 
Haupt and Haupt (2004). 

 
Figure 2. Flowchart of concentration assimilation 
using the GA-Var technique. 

 
 

3. MEANDERING PLUME EXAMPLE 
 
3.1 Problem Description 
 

Gaussian dispersion in a meandering wind field is 
used as a first testbed for our assimilation methods here. 
Such a configuration is simple, it varies smoothly in time 
and space, and it represents an important realizable 
state of the atmosphere. Meandering wind conditions 
are particularly common during nocturnal stable 
boundary layer conditions (Hanna 1983, Mahrt 1999, 
among others).  

We concentrate on an instantaneous release of 
contaminant in a neutrally buoyant atmosphere, which 
can be modeled with a Gaussian puff equation: 
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where Cr is the concentration at receptor r, (xr, yr, zr) are 
the Cartesian coordinates downwind of the puff, Q is the 
emission rate, ∆t is the length of time of the release 
itself, t is the elapsed time since the release, U is the 
wind speed, He is the effective height of the puff 
centerline, and (σx, σy, σz) are the standard deviations in 
the concentration distribution in the x-, y-, and z-
directions, respectively.  The standard deviations of the 
model are computed according to Beychok (1994): 
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where: x is the downwind distance in km, and I, J, and K 
are coefficients dependent on Pasquill stability class for 
both yσ , and  zσ  and can are tabulated in Beychok 

(1994).  We use x yσ σ=  here. 

For our test scenario, the puff transport and 
dispersion occurs in a sinusoidally varying wind field 

with a constant wind speed of 5 m s  and direction, θ, 
defined as: 

1−

 
0 sin(2 )tθ θ πω=                         

(7) 
 
where 

0θ  is the maximum amplitude (set at 20°),  ω is 

the oscillation frequency (set at 1/600 s ), and  t is the 
time variable, measured from the time of release (for a 
total time period of 1000 s), consistent with its use in (5). 
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For an instantaneous release, it is equivalent to 
view this sinusoidal wind variation as either varying in 
time (the entire field with a single wind that varies in 
time) or in space (meandering wind field, as would be 
the case where local terrain, gravity waves, or inactive 
turbulence affect the flow).  The goal is to assimilate 
only the concentration data to adjust the wind field by 
defining the adjustment function in (3), 

),( fo
v CCG ,v f , and thus improving on the 

concentration forecast.   
The domain of the identical twin experiment is 5 km 

 5 km with grid points sited every 125 m, yielding a full 
spatial resolution of 41 x 41 grid points.  The synthetic 
data are produced with an integration time interval of 20 
s for a total integration time of 1000 s, the time required 
for the puff to traverse the domain. We assume that the 
source characteristics are known and seek to compute 
the time evolving wind direction.  Figure 3a indicates the 
domain and contours the “true” puff concentration 
calculated every 20 s but plotted only every 100 s. 

×

The GA-Var approach to wind assimilation is 
applied dynamically. We assume that we have already 
modeled the past dispersion history and seek to 

assimilate the most recent concentration observations 
into the transport and dispersion model. This is a two 

we use the current concentration 
measurements to compute the optimal wind direction 

 we use that wind direction to forecast the location 
plume at the next observation time.  

step process: 1) 

and 2)
of the 
 
3.1 Meandering Plume Results 
 

Puff concentration values predicted with the GA-Var 
technique appear in Figure 3b.  The concentration 
values predicted using this field-based technique is 
nearly indistinguishable from the original data (Fig. 3a).  

 

(a)

Figure 3. Series of concentration puff locations in 
meandering wind field calculated with a time step of 
20 s, plotted every 100 s for visualization for a total 
time of 1000 s.  a) original data created for 
comparison and b) puffs assimilated with the GA-
Var technique. 
   
 

Figure 4a shows the true (solid black line) and GA-
Var computed wind direction (blue dashed line) at each 
time step for the same assimilation setup. The GA-Var 
approach produces smooth time trajectories because 
the wind direction is computed directly from all 
observations. The solution is ill-posed at the first sample 
time because there is not yet sufficient puff spread to 

(b)



reach the sensor grid; hence, there is a large wind 
direction error at this time. After the first time step, the 
GA curve is indistinguishable from the truth 
curve. Figure 4b shows the locations of the puff centroid 
plotted as a trajectory in time. The GA curve is smooth 
and follows the truth quite accurately. In addition, the 
GA method does not rely on identifying features, but 
instead compares entire fields of concentration data.  
 

 

 
             

Figure 4. a) Wind direction as a function of time for 
full spatial and temporal resolution for the truth 
(solid black) and as computed by the GA-Var 
technique (dashed blue) and b) location of the puff 
centroid plotted as a trajectory in time for full spatial 
and temporal resolution comparing the three (same 
markings). 
       

The results above have demonstrated success at 
using concentration observations to infer a 
meteorological variable, in this case wind direction, to 
assimilate into the wind equation (3). That assimilated 
variable then forces the prognostic concentration 
equation (4). Haupt et al. (2009a) also addresses issues 
of how many concentration observations are necessary 
to correctly infer the wind direction in terms of both 
spatial and temporal data denial.  Figure 5 contours the 
root mean squared errors for the puff centroid location 
depending on the observational grid and the model time 

note that the centroid location RMSE increases steadily 
as fewer observations in space are incorporated into the 
model, yet shows less sensitivity to temporal data denial 
since computations at each time step are independent.  

 

 
Figure 5. Puff centroid location root mean squared

These results show promise for predicting the 
tran

 
. TUSSEYPUFF EXAMPLE 

4.1 he TusseyPUFF System 

e econd example tests the GA-Var technique in 

 
errors contoured dependent on the model time step 
and the observational grid for the GA-Var technique. 
 

(a) 

sport and dispersion of a contaminant in a time 
varying wind field. They also provide hope for being able 
to model elements of a specific realization of 
concentration dispersion if sufficient concentration 
observations are available. The data make it possible to 
determine the realization, allowing a more accurate 
prediction in spite of the one-way coupling of the wind 
and concentration models.   
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 s
re complex Shallow Water wind field coupled to a 

basic Gaussian puff dispersion model – the TusseyPuff 
system. TusseyPuff’s Gaussian puff model (see (5) 
above) requires a minimum of input information, is 
easily implemented, and treats the release as a 
computationally efficient single entity. To drive the 
Gaussian puff model a reduced gravity two dimensional 
Shallow Water model (Holton 1992) is chosen. 
TusseyPuff couples these two model elements and 
provides a basic but comprehensive test environment 
and is described in detail in Beyer-Lout (2007).  The 
Shallow Water equations are:  
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step used for the GA–Var technique. It is interesting to 
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where u is the zonal velocity component, v is the 
meridional velocity component, g’ is the reduced 
gravitational acceleration, , where g is the 
gravitational acceleration, T is the temperature of the 
fluid and ΔT is the temperature discontinuity above the 
fluid layer. Furthermore, ρ denotes the density and h is 
the depth of the fluid layer being modeled. The stress at 
the bottom of the layer 

TTgg /' Δ=
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where is the drag coefficient, taken here to be 0.02. 
The model domain spans 9 km x 9 km, with 30 x 30 grid 
points, yielding a grid spacing of 300 m in both the x- 
and the y-direction. The mean fluid depth of the layer is 
chosen to be 500 m, the temperature of the layer T is 
300 K and the temperature discontinuity above the layer 
ΔT is chosen to be 12 K, resulting in a gravity wave 
speed 

Dc

hgU '= of approximately 14 ms-1.  Periodic 
boundary conditions are imposed in both the x and y 
directions. 

 
4.2 Test Case Set-Up 

 
Cone-like topography is added to the Shallow 

Water model in order to create a more realistic wind 
field. The topography is centered in the domain and 
reaches a height of 400 m and extends approximately 4 
km in the horizontal. In addition the model is initialized 
with a small fluid height perturbation. For more 
information about the specific shallow water model used 
here see Beyer-Lout 2007. 

The same coupled model is used to generate 
observations for use in the data assimilation tests. This 
identical twin approach is advantageous for a test 
environment because it allows us to compare the 
performance of the different data assimilation schemes 
with a known ‘truth’. The ‘truth’ is created by first 
initializing TusseyPuff with a uniform wind field and a 
small fluid-height perturbation (see Figure 6). After a 
startup time during which the model is run forward to 
achieve dynamically consistent velocity and height fields, 
the contaminant puff is released. The release location 
was chosen such that the puff trajectory passes through 
the terrain driven flow (Figure 7). The resulting data 
fields are then used to derive the observations needed 
for the data assimilation tests. The observation stations 
are located at model grid points, for simplicity, so no 
interpolation is necessary. The sensors record wind 
velocity and direction every ten model time steps. 
 

 
Figure 6. Topography (blue) and initial fluid height 
(red) of the two dimensional shallow water model. 

 
 

 
Figure 7.  Wind field with topography and 
concentration puff in blue 

 
 
4.3 The Assimilation Process 
 

This study does not assimilate the continuous 
concentration fields, but rather the four puff parameters, 
the puff center x  and y , the puff spread σ, and the puff 
concentration amplitude, q. These puff parameters are 
derived from the continuous concentration field by fitting 
a Gaussian distribution to the observations. While 
computationally more efficient than assimilating the 
continuous concentration observations, this approach 
adds uncertainty when the puff is still small and only a 
few sensors detect concentration. The model is initially 
spun-up to assure that the transients have dissipated. 
Then a dynamic assimilation process is initiated for 
each time.   
 
4.4   Results for TusseyPUFF 

 
Model results carried out with the TusseyPuff model 

in a neutral atmosphere are generally good. Figure 8 
indicates the root mean squared error in three source 
variables as a function of time.  (Note the x and y puff 
parameters are collapsed into a single distance metric 



called location.) For all three, there is some initial 
oscillation as the puff grows large enough to influence 
the computations.  The magnitude of the location error 
stabilizes to very low values most quickly.  It is 
interesting to note the spike at a time of about 1500 s:  
that is the point in time when the puff first encounters 
the topographic bump. Thereafter, the RMSE is quite 
low, indicating the success of the GA-Var procedure. 

 

 
Figure 8.  Results of estimating source strength, 
spread, and location for TusseyPUFF.  

 
 

5. CONCLUSIONS 
 

The GA-Var technique is shown to be effective for 
assimilating concentration data into a model to 
successfully recover information necessary to predict 
future atmospheric transport and dispersion despite the 
issue of one-way coupling in the system.  Not only does 
the genetic algorithm successfully identify the realization, 
but it also computes modeling variables necessary to 
provide a better prediction. By assimilating observation 
data we are able to more closely predict a specific 
realization of a dispersion event, thus providing 
emergency responders with more accurate predictions.  
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