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1. INTRODUCTION 
 
Until the 1990s, operational meteorological centers 
employed a deterministic model run with initial 
conditions (ICs) provided by a single deterministic 
analysis. This approach did not address inherit 
uncertainty of weather forecasts. Uncertainties in 
numerical weather prediction (NWP) can be outlined 
in two categories; uncertainties in ICs and 
uncertainties arising from model formulation. Ideally, 
an ensemble is formed from multiple forecasts with IC 
perturbations that sample analysis error and model 
perturbations that sample model uncertainty. Here we 
address only initial-condition uncertainty. 
 
In approximately the past decade, various data 
assimilation (DA) techniques have been developed to 
account for the uncertainties in ICs. One approach is 
the Ensemble Transform Kalman Filter (ETKF) 
(Bishop et al. 2001, Wang and Bishop 2003). The 
ETKF is a form of Kalman filter (Kalman, 1960) that 
provides forecast error covariance matrix estimation 
from the covariance matrix of the ensemble forecast 
perturbations. This technique transforms forecast 
perturbations into analysis perturbations through a 
transformation matrix approach. The ETKF solves for 
updated perturbations, given a current set of 
observations, in the ensemble subspace. It can also 
be used to update the mean in a full data assimilation 
system, but in the hybrid approach discussed here the 
mean is updated variationally. 
 
Ensemble based DA systems suffer from problems 
with under-sampling because the number of 
ensemble members is much smaller than the number 
of degrees of freedom in an NWP model. Among 
other problems, this can cause an under-estimation of 
variance. Wang and Bishop (2003) introduced an 
adaptive inflation factor scheme to alleviate this 
problem. It aims to match the spread of the ensemble 
with the error of the ensemble mean forecast while 
accounting for the error in observations. The inflation 
factors may become large due to variance under-
estimation and model errors (Bowler et al. 2008).  
 
 

 
 
Approaches that synthesize characteristics of 
ensemble-filter based DA schemes with variational 
DA techniques are often referred to as hybrid DA 
techniques. Most three dimensional variational (3D-
VAR) data assimilation systems use static 
background error covariance that lacks flow-
dependent information. Some studies have suggested 
that an augmentation of an error covariance matrix 
with an ensemble-based error covariance matrix can 
provide an improved variational DA system (Barker 
1999, Lorenc 2003, Etherton and Bishop, 2004). 
Lorenc (2003) has shown that by extending the 
control variables of an existing variational DA system, 
an ensemble based covariance model can be 
constructed to enhance the static background error 
covariance. The WRFVAR-ETKF based hybrid data 
assimilation scheme was introduced by Wang et al. 
(2008a). This hybrid technique updates the ensemble 
mean through WRF-VAR system using both the static 
and flow-dependent covariance estimates.  
 
The remaining part of this paper is organized as 
follows. The description of WRFVAR-ETKF based 
hybrid system is given in Section 2. The experiment 
design is explained in Section 3. Outlines of some 
preliminary results are presented in Section 4. Section 
5 outlines some conclusions drawn from this work. 
 
 
2. THE WRFVAR-ETKF BASED HYBRID DATA 
ASSIMILATION SYSTEM CONFIGURATION 
 
At the Data Assimilation Testbed Center (DATC), we 
used the Weather Research and Forecasting (WRF) 
Model (Skamarock et al. 2005) and the WRF 
Variational Data Assimilation (WRF-VAR) system 
(Barker et al. 2004) in conjunction with the ETKF 
(Wang and Bishop, 2003) and hybrid technique 
(Wang et al. 2008a) to implement the hybrid 
WRFVAR-ETKF system. 
 
The hybrid WRFVAR-ETKF system offers some 
tunable parameters to regulate contributions from the 
ensemble and 3D-VAR and a horizontal length scale 
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for covariance localization (Hamill et al. 2001) that is 
designed for the ensemble covariance. We have set 
contributions from ensemble and static background 
error covariance estimates to be equal. The mean 
updated in WRF-VAR can be localized, and here 
horizontal scale of the covariance localization is 
1500km. Further details of tunable parameters can be 
found in Wang et al. (2008b). Note that perturbations 
from the ETKF cannot be formally localized because 
they are computed in the ensemble subspace.  
 
For each cycle, the ensemble mean of the forecasts is 
computed. Ensemble perturbations are derived from 
ensemble forecasts. The WRF-VAR is run in hybrid 
mode using the ensemble mean as the first guess, 
ensemble perturbations to provide flow-dependent 
information, and static background error covariance of 
the domain generated previously.  
 
The ETKF system is used for accounting uncertainties 
in ICs and updating ensemble perturbations. Updated 
ensemble perturbations are then added to updated 
ensemble mean to generate updated ensemble ICs. 
The ensemble lateral boundary conditions (LBCs) are 
updated by incorporating updated ensemble ICs. The 
WRF system using the updated ensemble ICs and 
LBCs is run for generating next cycleʼs ensemble 
forecasts.  
 
A number of sensitivity studies have been performed 
as a part of preliminary testing and optimization. It 
revealed erroneous observations leading to 
anomalously high inflation factors and computational 
instability issues. An additional step has been 
implemented to generate filtered (quality controlled) 
observations by eliminating observations largely 
deviated from the ensemble mean. This new step has 
resulted in stable runs. A flow diagram of the hybrid 
WRFVAR-ETKF system implementation has been 
depicted in figure 1. 
 
 
3. EXPERIMENT DESIGN AND RUN SET-UP 
 
We have set up a test domain with horizontal grid 
spacing of 45 km, 57 vertical levels, and the model 
top placed at 50 hPa. NCEP Global Forecast System 
(GFS) analyses, Agriculture Meteorology Modeling 
Systems (AGRMET) land surface analyses and Navy 
SST are used for initial and boundary conditions. Only 
conventional observations are assimilated.  
 
We have designed a retrospective testing which 
consisted of 10-member ensemble with 3-hourly 
cycling for a 30-day period (15th August – 15th 
September 2007).  The very first cycleʼs ensemble ICs 
and the ensemble LBCs are produced by adding 
spatially correlated Gaussian noise, which are 
provided by the background covariance model of 

WRF-VAR (Torn et al. 2006), to the GFS forecasts. 
 
The runs outlined below help to evaluate whether the 
hybrid WRFVAR-ETKF system is more skilful and 
efficient than the standard WRF-3DVAR system. We 
performed a 30-day period retrospective runs as listed 
below: 
 

i. Base runs: No variational data assimilation, 
only WPS, REAL and WRF. 

ii. Computation of static background covariance 
matrix data for standard WRF-3DVAR 

iii. Three hourly full cycling tests: 
• CYC1: Hybrid (the ETKF part with modest 

inflation factor generation mechanism). 
• CYC2: Hybrid (the ETKF part with a higher 

inflation factor generation mechanism). 
• CYC3: Using only standard 3DVAR 

 
We have also included digital filter initialization (Lynch 
et al. 1997) setting into the WRF deterministic 
forecasts that used hybrid generated updated 
ensemble mean. 
 
 
4. HIGHLIGHTS OF PRELIMINARY RESULTS  
 
In this study, we tested two methods for ETKF 
inflation factor calculation. The first version provided 
modest inflation factors. The second version, coming 
directly from Wang and Bishop (2003), provided 
higher inflations factors and more spread. The impact 
of employing modest and high inflation factors has 
been evaluated by looking at the 500-hPa-height 
standard deviation. The 500-hPa height standard 
deviation of the ensemble for CYC1 and CYC2 
indicate that CYC2 has better spread compared to 
modest CYC1 as shown in figure 2a and 2b 
respectively.  
 
A simple verification against conventional 
observations was completed. For the brevity of this 
paper, we present only results based on CYC2 and 
CYC3 tests. Figures 3a and 3b depict the 24-h and 
48-h forecast errors of wind (U and V), temperature 
(T), and water vapor mixing ratio (Q) for CYC2 (shown 
in red color) and CYC3 (shown in blue color) 
experiments respectively. The CYC2 (WRFVAR-
ETKF) hybrid cycling run gives better RMSE scores 
especially for horizontal wind compared to CYC3 
(WRF-3DVAR). It is noted that improvement for 
temperature and specific humidity fields are slight.   
 
We also verified our results against ECMWF analysis 
data set (T106) and found similar results as shown in 
figure 4a and figure 4b. The results indicate that there 
is no noticeable improvement at the model top levels. 
This may be due to some inherit problems of WRF 
modelʼs representation of upper troposphere. 
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5. SUMMARY AND CONCLUSIONS  
 
We have implemented a hybrid WRFVAR-ETKF 
system that combines ETKF flow-dependent error co-
variances with static background error co-variances in 
the WRF-3DVAR system and tested it for a 30-day 
period with 3-hourly cycling. 
 
This study used more conventional observation types 
compared to Wang et al. (2008b). This allowed the 
ETKF to account for errors in an analysis that uses a 
wider variety of observation types. Three-hourly 
cycling made better use of asynoptic observations. 
We also implemented an additional observation 
quality control step to prevent erroneous observations 
that can cause unrealistic high inflation factors. 
Preliminary simple verification results indicate a 
positive benefit of using the WRFVAR-ETKF hybrid 
system. This study also shows that the hybrid system 
can be effective even with a small ensemble size.  
 
The ETKF scheme does not have covariance 
localization to mitigate spurious long-distance 
covariance, and the single inflation factor is applied 
domain-wide.  A hurricane/tropical cyclone can 
therefore be subject to large (unphysical) 
perturbations, and the ensuing model run can become 
numerically unstable. We observed some instability 
issues during the active period of hurricane Dean, the 
WRF intermittently failed to complete a forecast.  
When model failures prevented computation of a flow-
dependent covariance, the forecasts were restarted 
from the GFS-WRFVAR based ensemble IC and LBC 
generation explained in the Section 3. 
 
Recent studies suggest that some forms of 
localization can be applied on the ETKF (Bowler et al. 
2009 and Bishop and Hodyss 2009) to alleviate 
spurious correlations. Such approaches may help to 
reduce computationally unstable cases. 
 
In future studies, additional isolated runs are needed 
to evaluate various tunable hybrid parameters. For 
example, the impact of increased weighted 
contribution from ensembles could be tested with 
additional sensitivity tests. It would also be interesting 
to investigate the impact of smaller/larger horizontal 
length scale for covariance localization. We only used 
static background error covariances produced from a 
series of single WRF forecasts (NMC method); 
investigating the benefit of tuning the static 
background error covariance matrix with ensemble-
mean based forecasts (Wang et al. 2008b) could 
improve effectiveness of the static background error 
covariance. Using higher horizontal resolution may 
help to understand how the hybrid can contribute the 
improvement of mesoscale forecasts.  
 
We may need to do some additional work to optimize 

the ETKF inflation factor further. Wang et al. 2007 has 
added a new adaptive factor to estimate the fraction 
of the ensemble-mean error variance projected onto 
the ensemble subspace in the ETKF. It is designed to 
alleviate the systematic underestimation on the error 
variance -which may be caused by small ensemble 
size. Bowler et al. (2008) suggested using a revised 
version of inflation factor generation mechanism that 
aims to avoid introducing oscillations to ensemble 
spread by using a geometric mean of the individual 
cycle inflation factors.  
 
This study opens new avenues for future work to 
examine separate contribution of the various settings 
of the WRFVAR-ETKF hybrid system and their impact 
on sensitivity studies and real-time/operational 
weather forecasting.  
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Figure 1: A flow chart depicting the WRFVAR-ETKF-hybrid system implemented at the NCAR/DATC. 
 
 
 
(a) (b) 

   
 
 
 
Figure 2a and 2b: 500hPa height (m) standard deviation for CYC1 and CYC2 tests respectively.  
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Figure 3a: RMSE computed from radiosonde observations and twenty-four hour forecasts through the 30-day 
experiment period: U-wind (upper-left), V-wind (upper-right), temperature (lower-left) and specific humidity (lower-
right). The horizontal bars indicate statistical significance. (Note that the CYC2 run is shown in red color and the 
CYC3 run is shown in blue color.) 
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Figure 3b: The same as 3a, but for forty-eight hours forecasts. 
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Figure 4a: RMSE computed from ECMWF analysis data (T106) and twenty-four hour forecasts through the thirty-day 
experiment period: U-wind (upper-left), V-wind (upper-right), temperature (lower-left) and specific humidity (lower-
right). The horizontal bars indicate statistical significance. (Note that the CYC2 run is shown in red color and CYC3 
run is shown in blue color.) 
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Figure 4b: The same as 4a, but for forty-eight hours forecasts. 
 
  
 
 
 
 
 
 


