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Several new methods of object-based 

verification have recently appeared in the 
literature and these are reviewed in Gilleland 
et al. (2009). The Method for Object Based 
Diagnostic Evaluation (MODE) is one of 
these methods (Davis et al. 2006a,b; 2009, 
henceforth D09). The method has been used 
to evaluate precipitation forecasts from 
relatively fine-resolution regional models. 
MODE first identifies distinct features in the 
forecast and observed rainfall fields by 
performing a convolution operation (which 
acts like a smoothing), followed by a 
thresholding to retain areas of greatest 
interest, and also to remove some kinds of 
errors in the data that contaminate lower rain 
rates. 

Once an object has been identified, 
two-dimensional geometric properties of the 
object are computed. These include the 
centroid location, long and short axes, aspect 
ratio (the ratio of short to long axis lengths) 
and the orientation angle that the long axis 
makes with respect to the ‘x’ direction of the 
analysis grid. 

Once attributes are defined for each 
object, attributes of objects in one field are 
compared, with attributes of all objects in 
the comparison field. The likelihood that a 
pair of objects, one in each field, match is 
computed using a fuzzy-logic algorithm 
based on a “total interest”, a summation of 
how closely objects in a pair resemble each 
other.  Total interest for the jth object pair is 
defined: 
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Here F is the interest function that 
prescribes, on a scale from 0 to 1 with 1 
being perfect, how closely a forecast 
attribute matches the observed attribute.  
The coefficient w is the weight assigned to 
that interest function and c is a function of 
attributes that describes the confidence in a 
partial interest value obtained from wiFi,j.  
Total interest comprises M interest functions 
that compare attributes of each object pair.  
Specific attributes are outlined in D09. 

  
2. MODE in 3-D 

 
The foregoing overview of the object 

identification and matching likelihood 
computation is valid for two-dimensional 
objects. However, precipitation systems are 
often characterized as much by their 
evolution in time as by their structure in two 
spatial dimensions. The timing of rainfall 
systems marks a major forecast challenge. 
Furthermore, treatment of time and space 
dimensions together gives information about 
the translation speeds of forecast and 
observed features, and can distinguish 
features that may be spatially proximate at a 
given time, but propagating in different 
directions from features that are further 
separated at a given time but propagating in 
similar directions at similar speeds. Such 
information, in turn, provides more 
diagnostic power for understanding model 
errors. Errors in physical representation of 
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convection reveal themselves not so much 
by structural disparities with observations, 
but rather fundamentally different timing in 
the diurnal cycle and propagation 
characteristics. 

 The primary question we address in 
this paper is the extension of MODE to three 
dimensions (x,y,t) where t is time. 
Mathematically there little distinction 
between spatial and temporal dimensions. 
Thus one can view objects in 3-D as in Fig. 
1, where the centroid is now defined in 

three-dimensional space (x,y,t) and there are 
two axis angles that must be defined to 
specify the orientation of a feature. 
Furthermore, volume replaces area as a 
measure of object size. 

In practice there are some subtleties, 
one being how to relate temporal and spatial 
displacements of objects. For a given object 
moving at velocity  would be the 
obvious relation between spatial and 
temporal errors. In dimensional terms, this 
means that for an object moving eastward at 
10 m/s, a displacement of 1 hour in time 
would be equivalent to a spatial 
displacement of 36 km. 

,v dx vdt=

However, the system-following 
relationship between space and time turns 
out to be not particularly relevant for 
assessing correspondence between simulated 
and observed precipitation features. First of 
all there is the problem presented by slow-
moving systems, say, 3 m/s, in which a 
spatial error of only 100 km would be 
equivalent to a timing error of about 9 h. 
This could place “matching” systems in 
different phases of the diurnal cycle. Clearly 
if one adopts a constraint that the 
“environment” of the matching simulated 
and observed systems should be similar, we 
need to consider a severe penalty for 
temporal displacements greater than a few 
hours. The 2-D version of MODE severely 
penalizes spatial displacements of forecast 
and observed systems when the distance 
separating their edges becomes comparable 
to the scale of the systems. For instance, for 
two systems, each about 100 km in size, a 
displacement of 200 km or more would 
result in a relatively low likelihood of a 
match.  

Thus, a practical relationship 
between space and time is the size of typical 
systems and a small fraction of the diurnal 
cycle. This implies a larger “effective 
speed” relating spatial and temporal errors. 
Herein we adopt c=30 m/s, meaning that a 
spatial displacement of 300 km is equivalent 
to a temporal displacement of about 3 h. 

Figure 1. Hypothetical three-dimensional 
precipitation object in (x,y,t), where the major 
axis (red line) and centroid (blue dot) are 
shown. Time is the vertical direction. 

The above definition allows us to 
define a modified definition for the centroid 
separation, 
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Here, subscripts 1 and 2 refer to the forecast 
and observed objects, respectively, with 
centroids at 1,2 1,2 1,2( , ,x y t .  It is convenient 
to nondimensionalize the distance in the 
form of an interest map. This is simply a 
function of distance that varies from unity 
for d=0 and decays linearly to 0 at d=1000 



km. The interest value represents the 
likelihood that the forecast object can be 
identified as the model’s manifestation of 
the observed feature.  

Each pair of forecast and observed 
objects will have an interest value between 0 
and 1. A matrix of interest values is 
constructed, following D09, in which the 
interest value for each pair is one matrix 
element. 

As a specific example, consider the 
WRF ARW forecast for June 15, 2002, 
during IHOP (Fig. 2). The hourly 
precipitation data are from the Stage IV 
analysis. The model precipitation is also an 
hourly accumulation. The ARW was 
initialized with the interpolated NCEP Eta 
analysis valid 00 UTC on the days under 
consideration. The model was integrated for 
36 hours on a single domain with a grid 

spacing of 3 km that covered a large fraction 
of the CONUS. Boundary conditions were 
obtained from the Eta forecasts. The cloud 
physics scheme was the Thompson 
microphysics scheme, and the boundary 
layer scheme was the Mellor-Yamada-Janjic 
TKE-predicting scheme.  

A comparison of the hourly 
precipitation fields, displayed as objects in 
(x,y,t) space appears in Fig. 2. The 
cylindrical convolution and thresholding 
have been applied using two thresholds for 
hourly rainfall: 2 and 4 mm. The partial 
transparency of the 3-D objects makes 
visible the heavier rain region within the 
lighter-rain envelope. We also enforce a 
constraint of a minimum volume for a 
system to be included in the analysis, 
expressed as 300 grid volumes, with each 
grid volume 12-km in each spatial direction 

Figure 2. Space and time depictions of rain systems. Gray indicates the volume of systems exceeding 1 mm/h; 
colors (not indicative of matching between forecast and observations) show volume exceeding 4 mm/h. 



and 1-h in time. A system 10x10x3 would 
be 120 km in each spatial dimension and 3 h 
in time. 

The interest matrix for this case is 
shown in Table 1. The values shown in red 
are notably larger than the other values, and 
indicate that forecast object 2 probably 
matches observed object 2, and forecast 
object 4 probably matches observed object 
3.  

Given the interest values, we define 
the “best match” for each forecast and 
observed object, that being the maximum 
across each row and column respectively. 
We then compute the median value of these 
maxima. For forecast objects, we compute 
the median of 0.06, 0.67, 0.27 and 0.72, 
which is 0.47. For the observed objects, the 
median of maximum interest is 0.67. To 
obtain an overall metric of forecast quality, 
we simply average the two median values 
and obtain 0.57, a metric known as the 
Median of Maximum Interest (MMI). 
 
3. Results 
 

Using the procedure outlined above 
we may compare forecast quality on 
different days, the result of which appears in 
Table 2. Note there is substantial variation 
among these days, especially at the lower 
threshold. The poorest forecast occurred on 
June 13, while June 12 was the best overall. 
This method can easily be extended to 

comparing multiple models and to larger 
datasets. For  
2-D objects this was demonstrated in D09. 

Total interest can also be used to 

assess which forecast systems likely 
correspond to observed rain systems, and 
from these pairs of objects, the joint 
distributions of other object attributes can be 
defined. An example, covering all pairs of 
systems during the 5 days shown in Table 2 
whose total interest exceeded 0.5 is shown 
in Fig. 3. The scatterplot of system 
translation speed (derived from the slope of 
the major axis of each object relative to a 
“vertical” space=constant line (e.g. Fig. 2) 
suggests that there is no substantive bias in 
the forecast translation speeds, but there is 
not a high level of skill in the prediction of 
translation speed. 

Another important attribute is system 
lifetime.  The distribution of this parameter 
is truncated because of the minimum space-
time volume constraint all systems must 
satisfy, and because simulations are of 
relatively short duration. However, from the 
scatterplot in Fig. 4, it is evident that the 
forecasts have some ability to simulate the 
lifetime of events, although there is a slight 
positive bias. 
 

Date of 
initialization 
(00 UTC)  

MMI (T=2)
 
 MMI (T=4)

 
 

10 June  0.56  0.75  

11 June  0.42  0.59  

12 June  0.75  0.70  

13 June  0.34  0.56  

15 June  0.57  0.50  

Table 2. Median of Maximum Interest for five 
forecasts during IHOP, and two threshold rainfall 
values (2 and 4 mm). Forecasts initialized at 00 
UTC on date shown and integrated 36 h. 

Table 1. Interest matrix for 15 June. 



4. Summary 
 

The present paper has demonstrated 
an extension of the MODE method 
described in recent articles (e.g., D09) to 
include time evolution. This results in three-
dimensional objects (x,y,t). Most of the 
concepts from MODE can be applied in a 
straightforward way to three dimensions 
provided the scaling between space and time 
can be established. The diurnal cycle drives 

a relatively rapid variation of environmental 
conditions compared to the time scale over 
which individual systems physically migrate 
into a different environment. Thus, the 
effective speed that relates space and time is 
larger than the speed of an individual rain 
system. We have chosen 30 ms-1 in this 
work; this is roughly double the typical 
speed of rain systems. 

Figure 3. Scatterplot of predicted and observed 
translation speeds for pairs of systems with total 
interest exceeding 0.5. Dot-dashed line is 1:1. 

The 3-D MODE described herein 
results in a relatively small number of 
objects over a given time period compared 
with the number that result from the 2-D 
version of MODE, where time correlations 
are not considered. This has the advantage 
of reducing the complexity of rainfall 
forecasts to a few parameters that describe 
the geometric and physical properties of 
precipitation objects. Thus, the 3-D MODE 
can succinctly encapsulate forecast 
performance but provide diagnostic 
information at the same time that is not 
available from traditional verification 
metrics. 

The next steps are to make the 
interest mapping more sophisticated, to 
extend the method to larger datasets and to 
compare forecasts from different models. 
We also wish to explore 3-D MODE applied 
to rainfall forecast problems with different 
space and time scales. 

Figure 4. Scatterplot of forecast rain system 
lifetimes versus observed lifetimes (h). 
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