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1.  INTRODUCTION 
Detecting low-altitude wind shear in support of aviation 
safety and efficiency is the primary mission of the 
Terminal Doppler Weather Radar (TDWR).  The wind-
shear detection performance depends directly on the 
quality of the data produced by the TDWR.  At times the 
data quality suffers from the presence of clutter.  Al-
though stationary ground clutter signals can be removed 
by a high-pass filter, moving clutter such as birds and 
roadway traffic cannot be attenuated using the same 
technique because their signal power can exist any-
where in the Doppler velocity spectrum.  Furthermore, 
because the TDWR is a single-polarization radar, 
polarimetry cannot be used to discriminate these types 
of clutter from atmospheric signals. 

The moving clutter problem is exacerbated at Western 
sites with dry microbursts, because their low signal-to-
noise ratios (SNRs) are more easily masked by un-
wanted moving clutter.  For Las Vegas (LAS), Nevada, 
the offending clutter is traffic on roads that are oriented 
along the radar line of sight near the airport.  The radar 
is located at a significantly higher altitude than the town, 
improving the visibility to the roads, and giving LAS the 
worst road clutter problem of all TDWR sites.  The Salt 
Lake City (SLC), Utah, airport is located near the Great 
Salt Lake, which is the biggest inland staging area for 
migrating seabirds in the country.  It, therefore, suffers 
from bird clutter, which not only can obscure wind shear 
signatures but can also mimic them to trigger false 
alarms.  The TDWR “dry” site issues are discussed in 
more detail by Cho (2008). 

In order to mitigate these problems, we developed a 
moving clutter spectral filter (MCSF).  In this paper we 
describe the algorithm and present preliminary test 
results. 

2.  THE PROBLEM 
Figure 1 illustrates one of the difficulties with not filtering 
out moving clutter signals from TDWR data.  A wide-
spread coherent bird flight event like this has two of the 
characteristics of a microburst—outflow of heightened 
reflectivity away from a central source and velocity 
divergence along the radials.  Thus, a microburst 
detector is in danger of issuing a false alert in this case.  
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Figure 1.  Example of bird clutter observed with the SLC 
TDWR at 0.5° elevation.  Left panel shows reflectivity, 
right panel shows radial velocity. 
 
Figure 2 shows Doppler velocity spectra vs. range for a 
microburst event (left) and a case with birds in many 
different range gates (right).  Not only are there bird 
signatures that are isolated in range-Doppler, there is a 
feature in range gates ~40-50 that is quasi-continuous 
and looks similar to a strong wind shear.  The challenge 
is to filter the bird signals in the right-hand case but not 
the microburst in the left-hand case. 

 

 
Figure 2.  Doppler velocity spectra vs. range for a 
microburst case observed with the Program Support 
Facility (PSF) TDWR in Oklahoma City, OK at 0.3° 
elevation (left), and a widespread bird contamination 
case observed with the SLC TDWR at 0.5° elevation 
(right). 
 
Bats can also cause similar problems for radar wind-
shear detection when they leave their roosts en masse 
at dusk. 

Road and rail traffic are also sources of moving clutter.  
In this case, the range-azimuth cells affected are known 
a priori, so the current method of dealing with the 
problem is to periodically generate a clutter residue map 
(CREM) and then censor the base data where the 



 

 

reflectivity does not exceed a certain amount over the 
CREM reflectivity.  The LAS road clutter problem is 
shown in Figure 3.  Note that some of the clearest road 
echoes line up with the radar line-of-sight radials.  This 
phenomenon is also observed at other sites, and we call 
it the building canyon effect.  In an urban environment 
roads are lined with buildings, so traffic is often not 
visible to the radar unless the beam shoots down along 
the road itself. 

 
Figure 3.  LAS road clutter at 0.8° elevation.  Left panel 
shows reflectivity, right panel shows radial velocity.  The 
large wedge of blank reflectivity to the northeast of the 
radar is due to terrain blockage. 

Airplanes, of course, are also moving clutter.  Because 
they are isolated targets, a point target filter deals with 
them effectively.  Although the current operational 
algorithm merely censors these points, we plan to 
interpolate the base data across these points in the next 
major radar data acquisition (RDA) system software 
revision.  The filtering algorithm presented in this paper 
should be an even better solution in the future. 

Finally, there are other moving targets that appear in 
TDWR data such as sea clutter and the spinning blades 
of a wind power turbine.  The latter is expected to be an 
ever-growing source of clutter that is still in search of a 
solution.  The work presented in this paper does not 
specifically address these phenomena, as the focus has 
been on the data quality issues at SLC and LAS. 

3.  MOVING CLUTTER SPECTRAL FILTER 
Stationary clutter filters are typically applied on one 
range-azimuth dwell data at a time.  Recognizing that 
more contextual information is necessary to identify 
moving clutter, techniques were developed that utilize 
multiple range gates of data.  The point target filters 
employed on both the TDWR and the Weather Surveil-
lance Radar-1988 Doppler (WSR-88D, more commonly 
known as NEXRAD) look for targets with reflectivity 
much higher than the neighboring range gates.  This 
type of filter can remove aircraft and isolated avian 
signals, but the weather returns in the same cells are 
also lost. 

A more modern approach filters data in the two-
dimensional (2D), Doppler velocity spectrum vs. range, 
domain (e.g., Sasaoka 2003; Meymaris 2007).  Because 
moving clutter spectral signals tend to be spectrally 
compact and discontinuous in range, these techniques 
would look for a range-continuous signal (weather) and 
discard other spectral components (clutter).  (Of course, 
stationary ground clutter can also be continuous in 
range, so it would have to be filtered out first.)  Two 

drawbacks to this approach are that it is computationally 
intensive relative to traditional weather radar signal 
processing, and that the output base data are smoothed 
in range. 

With the development of a new RDA system (Cho et al. 
2005), which is currently running operationally at LAS 
and SLC, there is considerable spare computational 
capacity for the implementation of future algorithms.  
The scalable architecture easily allows for additional 
(and/or upgraded) central processing units (CPUs) to be 
installed to meet further computational demand. 

With regard to the second drawback of the existing 2D 
spectral processing approach for moving clutter filtering, 
spatial smoothing of the data runs counter to the 
TDWR’s mission of detecting wind shear.  This is the 
reason why we decided to develop our own moving 
clutter spectral filter for the TDWR. 

First, we will give a brief outline of the MCSF algorithm, 
and then delve into more details. 

To set up the processing environment, we form a 
Doppler velocity power spectrum at each range gate 
with the usual window-and-DFT approach.  These 
spectra are stored in a 2D matrix (Figure 2, right).  The 
following steps are then followed. 

1. Remove stationary ground clutter with the 
spectral filter of choice (Figure 5). 

2. Remove positive power anomalies along range 
at each spectral bin in a manner similar to a 
point target filter (Figure 6).  Clutter signals that 
are not continuous in range are removed in this 
way. 

3. After suitable data massaging, determine the 
number and location of spectral modes (statis-
tically significant peaks) at each range gate.  A 
measure called the normalized circular excess 
mass (NCEM) is used to winnow out "insignifi-
cant" peaks in the spectra. 

4. Select one mode at each range gate such that 
the path connecting the modes has the short-
est possible overall distance (Figure 7).  This 
process favors retaining globally continuous (in 
range) signals over only locally continuous fea-
tures.  The assumption is that atmospheric sig-
nals will be continuous over longer ranges than 
moving clutter features. 

5. For modes other than the ones selected by the 
shortest connecting path, reduce the number of 
“extra” modes using a stricter NCEM threshold.  
This step is needed to reduce the incidence of 
these "extra" modes being part of the atmos-
pheric spectrum. 

6. Any leftover "extra" modes are deemed to be 
moving clutter and are removed by filling in 
with the computed spectral "noise" floor (Figure 
8). 



 

 

 
Figure 5.  Stationary ground clutter is removed from the 
spectra shown in Figure 2, right. 

 

7. Carry on with the rest of the usual signal 
processing for base data generation. 

 

Let us now elaborate on each step.  (Note: The term 
“circular” used in this paper refers to the fact that the 
Doppler velocity spectrum aliases, or wraps around, at 
the end points.)  There is nothing special about the first 
step of stationary clutter filtering.  One of various differ-
ent techniques can be used.  However, note that the 
Gaussian model adaptive processing (GMAP) filter 
(Siggia and Passarelli 2004) assumes the absence of 
spectral signal other than a stationary ground clutter 
peak and a Gaussian weather component.  Therefore, 
the presence of moving clutter signals distorts the 
weather moment estimation and can spuriously widen 
the “weather” spectrum within the filled ground clutter 
gap.  We, thus, recommend against the use of Gaussian 
fitting and clutter-gap filling in the suspected presence of 
moving clutter. 

 

 
Figure 6. Isolated spectral peaks are removed from the 
spectra shown in Figure 5. 

 

The isolated spectral peak filter in step 2 is similar to the 
TDWR point target filter, except that it runs along each 
spectral bin vs. range, and the number of neighbors 
considered in the spectral dimension expands with 
range away from the range gate of interest.  This 
expansion prevents filtering of cases where the spectral-
range signature has a shape like "\" "/" ">" or "<".  So 
only features shaped like "" or "•" are filtered. To be 
more specific, at range gate i and spectral index j, 
compare the spectral power P(i,j) to PP(i-m,j) and 
PP(i+m,j), and mark P(i,j) for removal if it is stronger 
than both PPs by a threshold T(m).  The gate difference 
m goes from 1 to 3, and the threshold values used 
currently are T(1) = 8 dB, T(2) = 10 dB, and T(3) = 17 
dB.  Removal is accomplished by linear interpolation 
over range.  PP is the peak value of spectral power 
taken over bins j – n to j + n (circularly wrapped around 
to the other side of the spectrum if needed).  As stated 
earlier, this spectral neighborhood expands with range 
such that n = 2 for m = 1, n = 4 for m = 2, and n = 6 for 
m = 3. 



 

 

 
Figure 7. Spectral modes (white dots) are identified at 
each range gate, and the shortest path (white line) 
connecting them in range is determined. 

In step 3, in order to avoid identification of spurious 
spectral peaks as modes, we first smooth the spectra 
over the spectral bins.  For this purpose we use a 
Gaussian kernel of width 0.3NDFT/(2va), where NDFT is 
the number of DFT bins and va is the Nyquist velocity.  
We also perform a three-point triangular moving aver-
age over range; this minimal smoothing is the only 
averaging that we do in the range dimension.  Then we 
estimate the spectral noise floor (power per bin) (e.g., 
Hildebrand and Sekhon 1974). 

Now, for a spectrum at a range gate, we locate all the 
local maxima.  Then for each maximum, we compute 
the NCEM.  The excess mass is essentially the area 
under the peak bounded by the curve itself and a 
horizontal-line lower limit defined by the highest value 
taken from the following set—either of the neighboring 
minima or the spectral noise floor.  (If a local maximum 
is below the noise floor, it is deleted from the maxima 
list.)  A nice visual illustration of the excess mass is 
given in Figure 2 of a paper by Fisher and Marron 
(2001).  NCEM is the excess mass divided by the per 
bin spectral noise power, with the distribution curve 
wrapping around at the ends. 

 
Figure 8. Undesirable spectral modes are eliminated.  
The first moment (white line) is shown for reference. 

 

Local maxima with NCEM below a threshold (currently 5 
dB) are eliminated.  Elimination of a maximum expands 
the size of a neighboring mode, so the NCEMs are 
recalculated for the remaining maxima.  The process of 
NCEM computation and maxima elimination is repeated 
until no more reduction takes place.  The remaining 
modes are deemed to be significant.  Finally, the poin-
ters to the modes are adjusted to be at the center of 
mass of the modes, not at the peaks. 

In step 4, one mode at each range gate is selected such 
that the path connecting the modes has the shortest 
possible overall distance from the first to the last gate.  If 
there is no mode in a range gate, that gate is skipped.  
"Distance" is defined to be α(∆i)2 + (∆j)2, where ∆i is the 
range gate difference, ∆j is the circular difference in 
spectral bin numbers between modes, and α is a 
constant determining the relationship between range 
distance and spectral bin distance.  Currently α is set to 
one; however, the algorithm is not very sensitive to α. 

The shortest overall path is determined using Dijkstra’s 
method (Dijkstra 1959).  We want the endpoints to have 
only one mode, so if an endpoint has more than one 



 

 

mode, we compute the circular median (Fisher 1993) of 
the mode locations over ten range gates from the 
endpoint and select the mode closest to the median. 

In step 5, we attempt to consolidate the spectral modes 
that are not part of the shortest path.  The reason for 
doing this is that the initial mode detection process 
allows for fairly minor modes to be kept, and thus the 
weather spectrum may be tagged with more than one 
mode.  We want it to be tagged with only one mode so 
that the final mode elimination step will not erode the 
weather spectrum.  To do this, we repeat the mode 
identification process of step 3, but with the NCEM 
threshold raised to 20 dB and the mode that is part of 
the shortest path protected from elimination. 

Finally, in step 6, the modes that are not part of the 
shortest overall connection path are eliminated by filling 
them in with the spectral noise floor power. 

4. RESULTS 
We now present some initial testing results of the MCSF 
algorithm.  Figure 9 is a case from SLC where wide-
spread bird flock flights contaminated the data.  The 
upper two plots show the results without MCSF, and the 
lower two plots show the corresponding results with 
MCSF.  The filtering works very well in this case, and 
we have many other examples of bird clutter that are 
cleaned up by MCSF in a similar fashion, albeit with 
small amounts of unfiltered moving clutter in some 
instances. 

 

  
Figure 9.  Reflectivity (left) and radial velocity (right) 
plots for data processed without MCSF (top) and with 
MCSF (bottom).  This was a bird clutter case observed 
with the SLC TDWR at 0.5° elevation. 

Of course, the ability to filter out moving clutter is 
worthless to the TDWR if wind shear events are also 
removed or altered.  Figure 10 shows a microburst 
without (top) and with (bottom) MCSF.  There is very 
little change between the two processed results, and 
MCSF preserves the strong velocity gradients.  MCSF 
also does well on a few other wind shear cases that we 
have collected so far, but we are in the process of 
capturing many more cases for testing. 

 
Figure 10.  Reflectivity (left) and radial velocity (right) 
plots for data processed without MCSF (top) and with 
MCSF (bottom).  This was a microburst observed with 
the PSF TDWR at 0.3° elevation. 

The results for road clutter were only partially success-
ful, with MCSF filtering out traffic returns from roads that 
were not parallel to the radar line of sight.  The roads 
that lined up with the radar radials, however, were 
largely not filtered.  MCSF fails in these cases, because 
the moving clutter extends continuously in range for 
long stretches at a time.  Thus, MCSF is not a complete 
solution for road clutter, but it should reduce the size of 
CREM areas where roads currently force data censor-
ing. 

5. SUMMARY DISCUSSION 
With the introduction of a new open and scalable RDA 
to operational TDWRs, enhanced signal processing 
algorithms can be successively implemented to improve 
data quality.  The first RDA algorithm upgrade focuses 
on mitigating range-velocity ambiguity (Cho et al. 2005).  
Dubbed Build 2 (emulation of the legacy processing 
algorithms is Build 1) it is currently undergoing accep-
tance testing by the FAA.  The MCSF algorithm dis-
cussed in this paper may be part of a subsequent 
software upgrade (Build 3). 

There is still considerable testing and development that 
needs to be conducted before MCSF is deemed ac-
ceptable for operational use.  For example, MCSF has 
only been tested on moving clutter with Build 1 data, 
which uses the legacy transmission scheme of constant 
pulse repetition interval (PRI) and pulse phase.  Starting 
with Build 2, the transmission scheme will become more 
complex, with a mix of various multiple PRI and pseudo-
random phase-code processing techniques.  On surface 
scans, which are used for wind-shear detection and 
where MCSF will be most needed, the default mode will 
be phase-code processing with the PRI changing every 
dwell.  Therefore, the interaction of MCSF with the 
phase-code processing, which also takes place in the 
spectral domain, needs to be investigated and the 
results optimized. There are other new processing 
features in Build 2 that need to be tested together with 



 

 

MCSF.  However, the collection of Build 2 data at the 
problematic sites (SLC and LAS) awaits the acceptance 
and operational fielding of Build 2.  So for now, we are 
only able to investigate MCSF-Build 2 interaction using 
data from the non-operational radars in Oklahoma City, 
where the moving clutter problem is not nearly as 
severe as in SLC and LAS. 

Due to the simultaneous processing of spectra across 
many range gates, the real-time implementation of this 
algorithm may require changes to the RDA software 
architecture, which is currently designed to process 
chunks of range gates in parallel.  The computational 
load will also increase significantly, so it must be deter-
mined whether the present CPUs will be able to keep up 
or whether a hardware upgrade would be needed. 

MCSF is certainly not foolproof.  If there is no underlying 
weather signal, it will not be able to filter out the moving 
clutter.  If the 2D spectral-range signature of the moving 
clutter extends continuously over a long range, MCSF 
may select to preserve it instead of the weather signal.  
As we have seen, roads that run parallel to the radar 
line of sight will not be filtered well.  However, the 
testing so far shows that it can dramatically improve the 
base data quality during periods when the current signal 
processing algorithm fails to do anything with moving 
clutter.  As long as it is proven to be robust against the 
degradation of wind shear information, it would be a 
valuable addition to the TDWR arsenal in fighting 
moving clutter. 
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