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Abstract
Atmospheric data is often recorded at scattered station
locations. While the data is generally available over a
long period of time it cannot be used directly for extract-
ing coherent patterns and mechanistic correlations. The
only recourse is to spatially and temporally interpolate
the data both to organize the station recording to a reg-
ular grid and to query the data for predictions at a par-
ticular location or time of interest. Spatio-temporal in-
terpolation approaches require the evaluation of weights
at each point of interest. A widely used interpolation ap-
proach is kriging. However, kriging has a computational
cost that scales as the cube of the number of data points
N , resulting in cubic time complexity for each point of
interest, which leads to a time complexity of O(N4) for
interpolation at O(N ) points. In this work, we formulate
the kriging problem, to first reduce the computational cost
to O(N3). We use an iterative solver (Saad, 2003), and
further accelerate the solver using fast summation algo-
rithms like GPUML (Srinivasan and Duraiswami, 2009)
or FIGTREE (Morariu et al., 2008). We illustrate the
speedup on synthetic data and compare the performance
with other standard kriging approaches to demonstrate
substantial improvement in the performance of our ap-
proach. We then apply the developed approach on ocean
color data from the Chesapeake Bay and present some
quantitative analysis of the kriged results.

1 Introduction
Kriging (Isaaks and Srivastava, 1989) is a group of geo-
statistical techniques to interpolate the value of a random
field (e.g., the elevation, z, of the landscape as a func-
tion of the geographic location) at an unobserved location
from observations of its value at nearby locations. It be-
longs to a family of linear least squares estimation algo-
rithms that are used in several geostatistical applications.
It has its origin in mining application, where it was used to
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estimate the changes in ore grade within the mine (Krige,
1951). Kriging has since been applied in several scientific
disciplines including atmospheric science, environmental
monitoring and soil management.

Kriging can be linear or non-linear. Simple kriging,
ordinary kriging and universal kriging are linear variants.
Indicator kriging, log-normal kriging and disjunctive krig-
ing are non-linear variants, that were developed to account
for models where the best predictor is not linear. Moyeed
and Papritz (2002) show that the performance of linear
and non-linear kriging are comparable except in the use
of skewed data where non-linear kriging performs better.

With improved sensors and ease of data collection, the
amount of data available to krige has increased by sev-
eral fold. One drawback of kriging is the computational
cost for large data sizes. One approach to allow kriging of
large data is to use local neighborhood kriging where only
the closest observations are used for each prediction. Al-
though computationally attractive, the methods require a
local neighborhood for each location where the prediction
is made, and predicting on a fine grid is still computation-
ally demanding. Another disadvantage is the discontinu-
ity in prediction along the peripheries of the local regions.

Another strategy for acceleration is to approximate the
covariance matrix to result in a sparser kriging system.
Furrer et al. (2006) use tapering to sparsify the covariance
matrix in simple kriging and thus reduce the complexity
of the least squares. Memarsadeghi and Mount (2007) ex-
tend a similar idea to ordinary kriging. Kammann and
Wand (2003) use a low rank approximation to the co-
variance matrix to reduce the space and time complexity.
Sakata et al. (2004) use the Sherman-Morrison-Woodbury
formula on the sparsified covariance matrix with spatial
sorting. The performance of all these approaches depends
on the underlying data, and reduces dramatically when-
ever the recording stations are located close to each other.

Alternatively, fast algorithms to solve the exact kriging
problem have also been proposed. Hartman and Hssjer
(2008) build a Gaussian Markov random field to represent
the station and the kriging points of interest to accelerate
the kriging solution. Memarsadeghi et al. (2008) use fast
summation algorithms (Yang et al., 2004; Raykar and Du-
raiswami, 2007) to krige in linear time (O(N )). However,
the speedup in these approaches are dependent on the dis-
tribution of the station and kriged locations. In this pa-
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per, we propose to use a graphical processing unit (GPU)
based fast algorithm to solve the exact kriging system. We
first formulate the kriging problem to solve it in O(kN2)
using iterative solvers (Saad, 2003) and then parallelize
the computations on a GPU to achieve “near” real-time
performance. Unlike other approaches discussed before,
our acceleration is independent of station location and dis-
tribution and does not rely on covariance approximation.

The paper is organized as follows: In Section 2, we in-
troduce the kriging problem and formulate the mean and
covariances for an ordinary kriging system. In Section
3, we propose our modification to the kriging formula-
tion to solve it in O(kN2). In Section 4, we discuss the
acceleration of our formulation on a graphical processor.
In Section 5, we discuss our experiments on various syn-
thetic, spatial and spatio-temporal datasets to illustrate the
performance of our kriging algorithm.

2 Linear kriging
Linear kriging is divided into simple kriging (known
mean), ordinary kriging (unknown but constant mean) and
universal kriging (the mean is an unknown linear combi-
nation of known functions), depending on the mean value
specification. We shall restrict the discussion here to or-
dinary kriging, however the approach that we propose in
Section 3 and the accelerations in Section 4 are generic
and apply to other categories as well.

Ordinary kriging is widely used because it is statisti-
cally the best linear unbiased estimator (B.L.U.E). Ordi-
nary kriging is linear because its estimates are linear com-
bination of of the available data. It is unbiased because
it attempts to keep the mean residual to be zero. Finally,
it is called best because it tries to minimize the residual
variance.

2.1 B.L.U.E Formulation
Let the data be sampled at N locations (x1, x2, . . . , xN ),
and the corresponding values be v1, v2, . . . , vN . The
value v̂j at an unknown location x̂j is estimated as a
weighted linear combination of v’s, given by,

ṽj =
N∑

i=1

wivi. (1)

Here, ṽj is the estimate, and let v̂j be the actual value
(unknown) at x̂j . To find the weights, the values (vi and
v̂j) are assumed to be stationary random functions,

E [vi] = E [v̂j ] = E(v). (2)

For unbiased estimates,

E [v̂j − ṽj ] = 0
E [v̂j ]− E [ṽj ] = 0

E [v]− E

[
N∑

i=1

wivi

]
= 0

E [v]−
N∑

i=1

wiE [v] = 0

N∑
i=1

wi = 1 (3)

Let the residue be rj ;

rj = ṽj − v̂j . (4)

Therefore, the residual variance is given by,

V ar(rj) = Cov{ṽj ṽj}−2Cov{ṽj v̂j}+Cov{v̂j v̂j} (5)

The first term can further be simplified as follow,

Cov{ṽj ṽj} = V ar{ṽj} = V ar{
N∑

i=1

wivi}

=
N∑

i=1

N∑
k=1

wi · wk · Cov{vivk}

=
N∑

i=1

N∑
k=1

wiwkĈik (6)

The second term can be written as,

Cov{ṽj v̂j} = Cov{

(
N∑

i=i

wivi

)
v̂j}

=
N∑

i=1

wi · Cov{viv̂j} =
N∑

i=1

wiĈi0

Finally, assuming that the random variables have the same
variance σ2

v , the third term can be expressed as

Cov{v̂j v̂j} = σ2
v (7)

Substituting from Eqs. (6-7) in Eq. (5),

V ar(rj) =
N∑

i=1

N∑
k=1

wiwkĈik +
N∑

i=1

wiĈi0 + σ2
v . (8)

For ordinary kriging, it is required to find w by mini-
mizing V ar(rj) with respect to w subject to the constraint
Eq. 3. This can be written as the minimization of the pe-
nalized cost function,

J(w) =
N∑

i=1

N∑
k=1

wiwkĈik +
N∑

i=1

wiĈi0 (9)

+σ2
v + 2λ

(
N∑

i=1

wi − 1

)
,

with 2λ the Lagrange multiplier. Taking derivatives of J
with respect to w and λ,

∂J

∂wi
= 2

N∑
k=1

wkĈi,k − 2Ĉi0 + 2λ (10)

∂J

∂λ
=

N∑
i=1

wi − 1 (11)
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Setting this to zero, we get the following system to solve,
to obtain the weights w and λ,

Ĉ11 . . . Ĉ1n 1
...

. . .
...

...
Ĉn1 . . . Ĉnn 1
1 . . . 1 0

×


w1

...
wN

λ

 =


Ĉ10

...
ĈN0

1


⇒ Ĉw = ĉ∗ (12)

In order to obtain the kriged output at M locations Eq. 12
needs to be solved at each location.

v∗ = v̂TĈ−1Ĉ∗, (13)

where,

v∗ =

 ṽ1̃
...

ṽM̃

 , v̂ =


ṽ1̃
...

ṽM̃

0



Ĉ∗ =


Ĉ1̃1 . . . Ĉ1̃N

...
. . .

...
ĈM̃1 . . . ĈM̃N

1 . . . 1



2.2 Covariance functions

There are two ways of specifying the covariances Cij , ei-
ther by a standard function or by evaluating it empirically
at each location. The latter approach is not suitable when
there are large number of stations, or when it is required
to krige at a non-station location. A functional form of co-
variance is preferred in these cases. The covariance func-
tion is generally chosen to reflect prior information. In
the absence of such knowledge, the Gaussian function is
the most widely used covariance (Isaaks and Srivastava,
1989),

kij = s exp
(
−‖xi − xj‖2

h2

)
. (14)

Another advantage with a functional representation is that
it is possible to krige by computing the matrix C on-the-
fly thus saving a lot of space requirements.

2.3 Computation complexity

Evaluation of a single set of weights w for a given location
requires the solution of the system in Eq. (12) and has a
computational complexity of O(N3), N being the number
of samples. Further, to get the weights at M locations,
the complexity increases to O(MN3). For M ≈ N , the
assymptotic complexity is O(N4), this is undesirable for
large N .

3 Proposed approach
Without loss of generality, the system in Eq. (13) can be
transposed,

v∗ = ĈT
∗ Ĉ−1v̂. (15)

The covariance functions Cij are assumed to be symmet-
ric in our discussions, therefore ĈT = Ĉ; hence there is
no difference in transposing. However, this strategy ap-
plies to asymmetric covariance matrices as well. Now,
the kriging comprises of solving a linear system followed
by a covariance matrix-vector product; thus resulting in a
complexity of O(N3 + N2). This is an order reduction
from the original formulation. Note that, in this approach,
the weights are not evaluated explicitly, and so the storage
is also avoided. Writing the two steps of the new formu-
lation,

Solve for y, Ĉy = v̂ (16)

v∗ = ĈT
∗ y

Such a formulation makes kriging similar to the train-
ing and prediction in Gaussian process regression (Ras-
mussen and Williams, 2005), a Bayesian machine learn-
ing approach (Bishop, 2006). The Gaussian process for-
mulation allows the definition of a variance (Vj) (Ras-
mussen and Williams, 2005) at the jth kriged location is
given by,

Vj̃ = Ĉj̃j̃ − V̂j̃ (17)

where, V̂j̃ is given by,

V̂j̃ =

 Ĉj̃1
...

Ĉj̃N


T  Ĉ11 . . . Ĉ1N

...
. . .

...
ĈN1 . . . ĈNN


−1 Ĉj̃1

...
Ĉj̃N


(18)

For simple kriging, iterative solution techniques like
conjugate gradient (CG) and GMRES (Saad, 2003) can
be used. For ordinary kriging, the linear system in Eq.
(16) results in a “saddle-point” problem, and SymmLQ
(Paige and Saunders, 1975) performs very well for these
problems and is used here.

3.1 Possible accelerations
The key computation in each iteration of
SymmLQ/CG/GMRES is the covariance matrix-vector
product. By using fast single processor algorithms
(Morariu et al., 2008) or parallelization, the cost of
this matrix-vector product in each iteration can be
significantly reduced.

Single processor accelerations use approximation algo-
rithms to compute the matrix-vector product in linear time
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Figure 1: Growth in the CPU and GPU speeds over the
last 6 years on benchmarks (Image from NVIDIA (2008))

O(N ), within some known error bound. However, the per-
formance is dependent on the distribution of the station lo-
cations. Maximum speedups are obtained when the data
is recorded at relatively uniform sampling.

Alternatively, the matrix-vector product can be divided
across multiple cores. No approximation is involved here
and this has a complexity of O(N2). An advantage of this
approach is that it is independent of the locations.
Strategy: Both these approaches have their own advan-
tages/disadvantages. A parallel implementation is inde-
pendent of the station locations and hence is useful when
the data are recorded at sparse locations. If it is known
apriori that the station locations are equally space (to
some degree), single-processor based accelerations are
more beneficial. In this paper, we use a parallel ap-
proach on a graphical processor to accelerate the matrix
vector product. For well-gridded data, our approach will
be marginally slower compared to a linear approximation
like FIGTREE (Morariu et al., 2008).

4 Graphical processors

Computer chip-makers are no longer able to easily im-
prove the speed of processors, with the result that com-
puter architectures of the future will have more cores,
rather than more capable faster cores. This era of multi-
core computing requires that algorithms be adapted to the
data parallel architecture. If algorithms can be so devised
the benefit is a significant improvement in performance. A
particularly capable set of data parallel processors are the
graphical processors, which have evolved into highly ca-
pable compute coprocessors. A graphical processing unit
(GPU) is a highly parallel, multi-threaded, multi-core pro-
cessor with tremendous computational horsepower.

In 2008, while the fastest Intel CPU could achieve only
∼ 50 Gflops speed theoretically, GPUs could achieve
∼ 950 Gflops on actual benchmarks (NVIDIA, 2008).
Fig. 1 shows the relative growth in the speeds of NVIDIA
GPUs and Intel CPUs as of 2008 (similar numbers are re-
ported for AMD/ATI CPUs and GPUs). The recently an-

(a) Covariance matrix-vector product

(b) SymmLQ

Figure 2: Speedup obtained with GPUML (Srinivasan and
Duraiswami, 2009) for matrix-vector product (Fig. 2a)
and kriging (Fig. 2b)

nounced FERMI architecture significantly improves these
benchmarks. Moreover, GPUs power utilization per flop
is an order of magnitude better. GPUs are particularly
well-suited for data parallel computation and are designed
as a single-program-multiple-data (SPMD) architecture
with very high arithmetic intensity (ratio of arithmetic op-
eration to memory operations). However, the GPU does
not have the functionalities of a CPU like task-scheduling.
Therefore, it can efficiently be used to assist the CPU in
its operation rather than replace it.

The covariance matrix vector product can also be
viewed as a weighted summation of covariance functions,
and GPU-accelerated summations are available as an open
source, GPUML (Srinivasan and Duraiswami, 2009) and
we used this to accelerate the kriging. NVIDIA GPUs
are equipped with an easy programming model called
Compute Unified Device Architecture (CUDA) (NVIDIA,
2008) and were used here.

4.1 Speedup

For the Gaussian covariance function, the speedup ob-
tained with GPUML is shown in Fig. 2a. By using
GPUML over each iteration, the speedup is further in-
creased over that for SymmLQ (ordinary kriging) in Fig.
2b.
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Figure 3: Synthetic surface generated and sampled to test
the performance of our kriging

5 Experiments
All our experiments were performed on a Intel Core2
quad core 3GHz processor with 4GB RAM. We used the
NVIDIA GTX280 graphical processor with 240 cores ar-
ranged as 30 multi-processors and a common 1GB global
memory.

5.1 Experiment1: Performance analysis
In this experiment, we tested our kriging approach on a
2−dimensional synthetic data in Sakata et al. (2004). The
data was sampled randomly on a 2−d grid, and value at
each sampled location was generated using the relation,

f(x1, x2) = sin(0.4x1) + cos(0.2x2 + 0.2), (19)
0.0 ≤ x1, x2 ≤ 10.0.

The surface represented by such a function is given in
Fig. 3. Although the surface is not so complex, we used
different sampling size to test the speed of various kriging
approaches across “number of stations”. We compared
our approach against several open-source kriging pack-
ages: Dace kriging (Lophaven et al., 2002), Davis kriging
(Lafleur, 1998) (algorithm based on Davis (1990)) and
mGstat kriging (Hansen, 2004). All these packages are
highly optimized for best kriging performance. The com-
parison of the residues and time taken by various kriging
approaches is shown in Fig. 4. It can be seen that the pro-
posed approach has the best time performance for compa-
rable residues.

In order to further emphasize the quality of our krig-
ing, we performed spatial interpolation on the “Stanford
bunny” point cloud data1 shown in Fig. 5a using the or-
dinary kriging approach. The point cloud contains 35947
points along the surface of the bunny. In order to krige
this data, the cloud was extended to size 104502 by adding
points along the normal inside and outside and assigning
values 0,−1 and 1 respectively. The surface was kriged at
8, 000, 000 points (regular spatial grid 200 × 200 × 200)

1http://graphics.stanford.edu/data/3Dscanrep/

(a) Residues

(b) Time taken

Figure 4: Performance comparison across different krig-
ing approaches for the synthetic data in (Sakata et al.,
2004)

from which the isosurface was found using standard rou-
tines (Turk and O’Brien, 2002). Our GPU implementation
took only 7 minutes to krige at the 8-million points while
a direct implementation would have taken ∼ 2 days on a
state-of-the-art PC. The quality of the resulting interpola-
tion can be seen from Fig. 5b.

5.2 Experiment2: Chesapeake Bay Data
We applied our kriging to the ocean color data from the
Chesapeake bay. The ocean color is an indicator of the
concentration of chlorophyll in the water. The data are
composite maps of SeaWiFS chlorophyll measured at a
2km resolution in the Chesapeake bay region recorded ev-
ery 7-days between 1998 and 2002 by NASA. The region
across which the data was recorded is shown in Fig. 6.
There were some days for which no recording available.

We used the Gaussian covariance matrix (Eq. 14) and
set the length scales (h in Eq. 14) to 0.06 degrees along
the latitude and longitude scales and 15 days along the
temporal scale. It was observed that on an average our
approach took 70 − 80s to krige the data for a single day
(a direct implementation would have taken ∼ 8 hours for
the same. The kriging results for the 15th day of each
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(a) Point cloud

(b) Kriged surface

Figure 5: Spatial interpolation of the “Stanford” bunny
point cloud data. Our approach took only 7 minutes, a
direct implementation would have taken ∼ 2 days.

month in the year is shown in Fig.7. It can be seen that
the chlorophyll concentration is low during the cooler pe-
riods of the year due to the relative inactivity of the alga,
whereas it increases by several folds during the warmer
periods (April-August) because of the blooms.

Fig. 8 shows the result of a variability analysis on the
kriged ocean color data over the entire 5−year period. It
can be observed that ocean color has a large variability
in regions very close to the land region. This is in line
with what is expected because of the well-known fact that
human activity (in the land regions) contribute to a large
extent to the chlorophyll concentration and hence a larger
variation; thus further validating our kriging.

6 Conclusion
In this paper, we have proposed a new formulation for the
kriging problem, that can be solved using iterative solvers
like conjugate gradient, SymmLQ. We further accelerate
each iterations on a GPU by using fast covariance matrix
vector products. The resulting kriging is illustrated to be
faster than many available tools and further validated on

Figure 6: Region across which ocean color data were
available (indicated in white color)

synthetic and recorded data.
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