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1 INTRODUCTION 

This paper describes the evaluation of a 
probabilistic convective nowcast system 
developed as part of the Federal Aviation 
Administration’s (FAA) Collaborative Storm 
Prediction for Aviation (CoSPA; Wolfson et al. 
2008, Pinto et al. 2010) effort.  Probabilistic 
convective forecasts are still in their infancy—
the research community spends significant 
efforts toward development and calibration of 
probabilistic forecasts, while also trying to 
establish what kind of probabilistic information 
should be provided.  We offer a viable 
alternative to a spatial smoothing of the 
extrapolation field or compositing time-lagged 
model ensembles (two of the methods that 
have been attempted).  Our experimental 
forecast system is based on random forests 
(RFs), a data mining technique that uses sets 
of decision trees trained to nowcast areas of 
convective weather based on a given set of 
predictor fields.  Individual trees in the forest 
“vote” on the prediction, and the number of 
votes is mapped to the likelihood, or 
probability, that a storm intensity threshold will 
be exceeded.  These probabilities have been 
evaluated using dichotomous and 
probabilistic scoring methods and shown to 
compare favorably to other benchmark 
forecasts at one and two hour lead times.   

One of the probabilistic forecasts used as 
benchmark was the Localized Aviation MOS 
Program (LAMP) thunderstorm guidance 
(Ghirardelli 2005).  This product was used 
both as an independent forecast and as a 
component of the RF.   

The RF was relatively skillful at predicting 
NWS Video Integrator and Processor (VIP) 
intensity level exceedance when tested on 
data from the summer 2009.  Based on a 

sliding probability threshold, the RF’s 
maximum threat score or critical success 
index (CSI), true skill score (TSS), receiver 
operating characteristic (ROC) curves, and 
other dichotomous evaluation scores all 
exceeded the equivalent scores from LAMP, 
simple extrapolation, and CoSPA forecasts.  
The Brier Skill Score also showed that the RF 
produced skillful probabilistic forecasts of VIP 
Level exceedance.   

One reason the RF surpasses simple 
extrapolation is that the RF prediction is not 
completely dependent on the most recent 
radar field and motion vectors.  It incorporates 
environmental stability fields and satellite 
trends, and thereby has the potential to 
predict new areas of convective initiation 
away from current storms.  Examples will be 
shown in two case studies.   
 

2 DATASET AND METHODOLOGY 

2.1 RANDOM FOREST (RF) TECHNIQUE 

The RF technique used in the present 
study (Breiman 2001) is a powerful, non-
linear statistical analysis or machine learning 
method that has previously proven useful for 
the problem of diagnosing regions of 
atmospheric turbulence that may be 
hazardous to aviation (Williams et al. 2007; 
Cotter et al. 2007; Williams et al. 2008).  
Essentially, RFs are ensembles of weak, 
weakly-correlated decision trees that “vote” on 
the correct classification of a given input.  The 
use of an ensemble of such trees minimizes 
the risk of overfitting the training set, a 
significant and well-known problem with 
individual decision trees.  In constructing each 
tree of an RF, one begins with a “training set” 
containing many instances of predictor 
variables along with an associated “truth” 
value (e.g., 0 or 1 depending on whether or 
not convective initiation did subsequently 
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occur at the given pixel in the next hour).  A 
“bagged” training sample is selected by 
drawing a random subset of n instances from 
the n-member training set, with replacement 
after each draw.  This means that, on 
average, each tree is trained on roughly 2/3 of 
the dataset, including duplicates.  Then, at 
each node of the tree, a subset of only m 
randomly-selected feature variables are 
chosen as candidates for splitting, contrasting 
with the usual practice of choosing the best 
split from all the feature variables.  A typical 
choice for m is the square root of the number 
of predictor fields.  Because not all feature 
variables are used to train each tree, those 
not used for training (the so-called “out-of-
bag” samples) may be used to evaluate the 
performance of that tree.  This allows the RF 
training process to estimate the importance of 
each variable based on the degradation in 
classification performance when the variable’s 
values are randomly permuted among the 
training instances.  Using this technique, the 
feature variables may be ranked in order of 
their importance to the RF’s performance, 
providing a helpful tool for performing 
selection of a minimal skillful set of predictors.   
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Fig. 1. Conceptual diagram of a random 
forest, an ensemble of weak, weakly-
correlated decision trees that “vote” on the 
classification of each data point. 

 
Once an RF has been trained, the trees 

function as an “ensemble of experts” to make 
predictions.  For example, Figure 1 shows a 
conceptual diagram of a RF with 100 trees.  
When a new data point (or “feature vector”: a 
set of predictor field values at the point for 
which the forecast is being made) is 
presented, each tree will perform a 
classification.  These classification “votes” are 
then compiled, and can be used to derive a 

probability for each possible class.  For 
example, if 40 trees vote “0” (no initiation) and 
60 vote “1” (initiation), the 60% classification 
confidence for initiation may be scaled into a 
probability, as described in a later section.   
 

2.2 DATASET 

Skill scores are presented from forests 
that were trained and tested on data from 
2009.  The training and evaluation period 
covers 1 July – 19 August 2009.   

The spatial domain for the RF training 
and test sets was over the eastern half of the 
conterminous U.S. as shown in Figure 2.  All 
fields, both predictors and forecasts, were 
mapped to the same 0.04° (approximately 4-
km) latitude-longitude grid.   
 

 
Fig. 2. The pink polygon delineates the 
domain used for this study.  Terrain height [m] 
is in the background. 

 

2.3 TRUTH FIELD 

The truth fields, or the events that we try 
to predict, are VIP level exceedance.  VIP 
levels are categorized intervals of vertically 
integrated liquid (VIL)1 that range from VIP 1 
to VIP 6.  VIP level 1 is associated with very 
light precipitation and VIP level 3 is 
associated with moderate to heavy rain.  

                                                           
1 The underlying field for VIP level in this study was VIL, 
which was derived from radar reflectivity as in Robinson 
et al. (2002).   
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Table 1 shows the range of VIL and 
composite reflectivity that corresponds to 
each VIP level.  VIP level 3+ exceedance is 
generally considered a proxy for hazardous 
convective weather that should be avoided by 
airline pilots.  The RF methodology has been 
applied to all 6 VIP thresholds, but we will 
focus on results for VIP 1 and VIP 3 for 
simplicity.   
 
Table 1.  Categories of VIP level with their 
equivalent intervals of VIL and radar 
reflectivity.   

VIP 
level VIL interval 

Composite 
reflectivity 

interval 
0 < 0.14 kg m-2 < 18 dBZ 
1 0.14-0.76 kg m-2 18-30 dBZ 
2 0.76-3.5 kg m-2 30-38 dBZ 
3 3.5-6.9 kg m-2 38-44 dBZ 
4 6.9-12 kg m-2 44-50 dBZ 
5 12-32 kg m-2 50-57 dBZ 
6 >32 kg m-2 >57 dBZ 

 

2.4 PREDICTORS 

Part of the RF training process involves 
estimating the importance of the predictors, 
as described in Section 2.1.  To isolate the 
most helpful predictors and reduce the 
computational overhead, only the predictors 
with significant importance were retained.  
Sets of similar predictors, such as the 
standard deviation of satellite-measured 
infrared (IR) radiance temperature within a 10 
km radius and the standard deviation of IR 
radiance temperature within a 20 km radius, 
were reduced to the most important member.  
In this fashion, 300+ predictors were gradually 
winnowed down to a set of 35.   

The LAMP thunderstorm product was 
used both as a predictor within the RFs and 
an independent probability forecast.  LAMP is 
a statistical forecast system run at NCEP that 
uses multiple linear regression equations to 
update the Global Forecast System (GFS) 
Model Output Statistics (MOS).  Along with 
temperature and precipitation grids, the LAMP 
produces probabilistic thunderstorm forecasts 
for two hour windows beginning at 1-3 h.  For 

Table 2.  The RFs were trained with these 36 
predictors. Additional descriptions of the 
individual fields may be found in Williams et 
al. (2008). 

Predictor Fields for the Random Forest 
LAMP TSTM 1-3 h forecast  
Accumulated precipitation from last 3 h 
Max. echo top height within 40 km 
MIT/LL environmental stability mask 
MIT/LL satellite peaks (max. within 40km) 
MIT/LL growth/decay (max. within 40km) 
MIT/LL growth/decay (standard dev. within 
40km) 
MIT/LL “air mass” storm indicator 
MIT/LL weather type (22 types) 
RUC13 relative humidity (900-700mb 
average) 
RUC13 most unstable CAPE 
RUC13 filtered frontal likelihood 
RUC13 700-200 mb mean U and V wind (2 
fields) 
RUC13 low-level wind shear (975-725 mb) 
RUC13 deep wind shear (1000-350 mb) 
RUC13 mid-level lapse rate (700-350mb 
temp. change) 
NRL cloud classification 
NCAR cloud classification 
Satellite IR radiance 13.3 μm 
Satellite IR radiance 11 μm (min. within 40 
km) 
Satellite IR radiance 11 μm 
Satellite water vapor radiance 6.7μm (min. 
within 40km) 
Satellite IR radiance 3.9 μm 
Satellite radiance difference (11 μm -13.3 
μm) 
Satellite radiance difference (11 μm -6.7 
μm) 
Satellite visible albedo 
Distance to VIP level 1-4 (4 separate fields) 
Max. VIP level within 40 km 
Standard dev. of VIP level within 40 km 
Max. VIP level within 20 km 
NSSL radar reflectivity smoothed with 5km 
filter 
Local solar time 
 
LAMP, a thunderstorm is defined as one or 
more lightning strikes in a 20-km grid box 
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(Charba and Samplatsky, 2009).  While the 
LAMP thunderstorm forecast is not designed 
to predict VIP level exceedance, and its 
forecast time window is not strictly equivalent 
to the 2-h lead time for the RF, we offer it as a 
loose benchmark for performance.   

Table 2 lists 36 fields that were used to 
train the RF.   
 

 
Fig. 3. Colored importance ranks for the RF 
predictors in the convective initiation regime 
(first column) and growth/decay regime 
(second column).  Blue denotes a lower rank, 
and thus higher importance.  Red denotes a 
higher rank and lower importance.  Below the 
first column the label “Init3 E/O 1hr” signifies 
VIP level 3 initiation; the RF was trained on 
even Julian days, while odd Julian days were 
held out for testing; and the lead time is 1 h.  
The meaning of the other label is the same 
except “VIP” stands for the growth/decay 
regime.   

2.5 CONVECTIVE REGIMES 

Although a single RF is capable of 
predicting VIP level for all regimes, it is useful 
to train separate RFs in regions of isolated 
convective initiation and regions that already 
have existing storms.  These two regimes are 
sufficiently different that training two separate 
forests is more effective.  This notion was 
supported by the RF predictor importance 
analysis, which showed very different 
rankings for predictors in the near-storm 
environment and in the far-storm environment 
(Fig. 3).  For example, convective available 
potential energy (RUC_CAPE) is colored blue 
in the convective initiation (CI) regime and 
yellow in the growth/decay regime.  This 
indicates a very high importance in the 
convective initiation regime versus the 
growth/decay regime.  The same relation 
holds true for the LAMP thunderstorm product 
(LAMP_TSTM2Hr_back2hr).  It is one of the 
top predictors in the CI regime, but is in the 
middle of the pack for the growth/decay 
regime.  It makes sense meteorologically for 
the RF to rely more on broad environmental 
predictors like CAPE for the CI regime than 
for the growth/decay regime.  The RF in the 
growth/decay regime can rely on the location 
of existing convective weather, but the CI 
forest cannot.  On the other hand, the current 
precipitating weather type (MITLL_WxType) is 
irrelevant to convective initiation, so its 
importance is very low (dark red).  However it 
is very important in the growth/decay regime 
(blue).   

A distance threshold of 40 km was used 
to separate the near-storm from far-storm 
environments.  If a pixel exceeded VIP 3 at a 
target time, then it was considered convective 
initiation if its position was at least 40 km 
away from any other VIP 3+ pixels at the 
beginning of the time window.  To obtain the 
position of the pixel at the beginning of the 
time window, the storm was advected 
backwards in space using MIT/LL storm 
motion vectors (Chornoboy et al., 1994; 
Wolfson and Clark, 2006).  In the present 
paper, the near-storm environment is called 
the growth/decay regime and the far-storm 
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environment is the convective initiation 
regime.   
 

2.6 RESAMPLING AND CALIBRATION 

In order to cross validate and get a sense 
of the robustness of our statistics, the data 
were divided into three mutually exclusive 
subsets.  Then the pixels from even Julian 
days were separated from the odd Julian 
days.  One set was used for training and the 
other for testing.  The opposite was done 
also—odd Julian days were used for testing 
and even Julian days were used for training—
so that a total of six subsets were available 
for cross validation.  Thus, for each forecast 
problem, there were six evaluations.   
 

 
Fig. 4. Calibration curve for the VIP 1+ 
exceedance at 1 h lead time in the 
growth/decay regime.  The observed 
frequency of the event is shown as a function 
of the number of RF votes.  Raw counts are 
shown in blue and the smoothed calibration 
curve is in black.   
 

Computational resources limited the 
number of training samples (pixels) to 
something on the order of 60,000 pixels.  This 
number was a compromise between having a 
large enough sample to be representative and 
finishing the training in a reasonable amount 
of time.  Besides the pixel count, additional 
trees and predictor fields also increased the 
training time.  To speed up the training 
process and increase the sensitivity of the 
trained RF, the data were selectively 

resampled so that the proportion of positive 
events (VIP level exceedance) in our training 
set was much higher than climatology.  For 
example, the climatology based on June-
August 2007 and 2008 showed an actual 
observed event frequency of 7% for VIP level 
1+ and 0.8% for VIP level 3+.  By resampling 
the data so that the training set had a larger 
proportion of events than the climatology, the 
RF was able to train more efficiently on the 
important events, maintaining better 
sensitivity.  Sensitivity tests revealed that the 
final performance results were relatively 
insensitive to this ratio.  A range of ratios from 
5% event frequency to 50% was tested.  The 
results presented in this paper come from 
forests trained with a 10% ratio of events to 
non-events in the training set.   

After the forests were trained on the 
resampled data, their vote counts on the 
independent testing set were compared to 
actual observed event frequency so that 
reliable probability forecasts could be 
obtained.  For example, Fig. 4 shows the 
relation between vote count and observed 
event frequency for VIP level 1+.  This 
particular curve is for a 200-tree forest trained 
in the growth and decay regime for forecasts 
with 1 h lead time.  The blue line shows the 
raw observed frequencies for each vote count 
and the smooth black curve shows the final 
fitted calibration curve, which may be used to 
map vote count to probability.  For every 100 
forecasts of 70% probability, one could expect 
the event to occur 70 times.  In this way the 
RF forecast was trained to be statistically 
reliable.  Similar calibration curves were also 
made for the convective initiation regime, 2 h 
lead times, and also for VIP level 3+.  
Unfortunately, there were so few convective 
initiation events for VIP level 3+ at 2 h lead 
time that a reasonable calibration curve could 
not be automatically fitted to the raw data.  
For this reason, the evaluation of the VIP 
level 3+ probability forecast was not available; 
for case studies, the calibration curve was fit 
manually.   
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2.7 VERIFICATION 

This section describes the verification 
methods used to evaluate the deterministic 
and probabilistic nowcasts.   

The standard contingency table scores 
such as probability of detection (POD), 
probability of false detection (POFD, or false 
alarm rate), probability of false alarm (POFA, 
or false alarm ratio), and bias are all defined 
in terms of the 2x2 contingency table (Wilks, 
2006).  There are four possible outcomes for 
each forecast: a hit, miss, false alarm, or 
correct null.  If we let  denote hits; b  false 
alarms;  missed events; and  correct 
negatives, then POD=

a
c d

/(a a )c+ , 
POFD= , POFA= , and 
bias= .  Other scores are defined 
below.  The threat score or critical success 
index (CSI) is  

/(b b
( )a b+

)+ d
/(a

/( +b a )b
)c+

 
a

CSI
a b c

=
+ +

  

and the true skill statistic (TSS) is  

 
( )(

−
=

+ +

ad bc
TSS

a c b d )
.    

CSI is the fraction of observed and forecasted 
events that were correctly forecasted, and 
TSS measures how well the forecast 
separates “yes” events from “no” events.  
Note TSS is equivalent to POD - POFD.   

  We begin with these scores because (a) 
they are familiar to most users and (b) they 
are directly applicable to the deterministic 
forecasts such as simple extrapolation and 
CoSPA, thereby facilitating a comparison with 
the RF and LAMP forecasts.  Probabilistic 
measures will be discussed later.  First, in 
order to convert the probabilistic forecasts 
(RF and LAMP) to binary yes/no forecasts, we 
calculated the scores at all probability 
thresholds.  The maximum possible skill 
scores were used as summary statistics.    
Fig. 5 illustrates the maximum CSI for one of 
the 2-h RF forecasts.  For low thresholds, the 
score suffers from many false alarms and for 
the high thresholds it suffers from a low hit 
rate.  In between, the CSI reaches a 
maximum of 0.46, and TSS reaches 0.78.  

These statistics are summarized for all the 
forecasts in the Results section.   
 

 
Fig. 5. Illustration of how max. CSI and max 
TSS were calculated from the probabilistic RF 
forecasts.  This example happens to be for 
the RF designed for VIP level 1+, 2 h lead 
time, and the growth/decay regime.  There is 
a curve for each of the six cross-validation 
subsets.   

 
Probabilistic measures were also used to 

evaluate the forecasts.  Reliability diagrams 
similar to Fig. 4, but with probability along the 
x-axis, were used to show whether forecasts 
in a particular probability bin actually coincide 
with the observed frequency of events.  
Ideally, the points in the reliability diagram 
should fall along the diagonal 1:1 line.  
Numerically, the performance of a probability 
forecast can be summarized by the Brier 
score (BS).  It is the weighted average of the 
squared difference between the forecasted 
probabil f ) and the binary observation (o ; 
0 or 1).   
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The Brier Skill Score (BSS) uses the 
climatological event frequency as a baseline 
to assess a forecast.  The BSS can be broken 
into three components consisting of (i) 
reliability, (ii) ability to resolve different periods 
with low and high probabilities, and (iii) 
closeness to a climatological probability of 
50% (Wilks, 2006).  Events that have a 
climatological probability close to 50% are 



J10.4 14th Conference on Aviation, Range and Aerospace Meteorology 
 American Meteorological Society, Atlanta, GA 18-21 January 2010 

more difficult to forecast than events close to 
0% or 100% because a guess based on the 
most likely outcome is less likely to be 
accurate by chance.   

 = −1
ref

BS
SS

BS
B

re

  

whe B is the Brier Score using the same 
climatological event frequency for each 
probability forecast.  BSS ranges from minus 
infinity to 1, with negative values associated 
with forecasts that are poorer than 
climatology, positive values with forecasts 
superior to climatology, and 1 with a perfect 
probability forecast.   

 refS

 
 
 
 
 
 
Fig. 6. Three panel plot over the southeast 
U.S. showing (a) VIP level observations at 
1630 UTC, 27 July 2009, the issue time of the 
forecasts, (b) deterministic 2-h forecast from 
CoSPA and (c) 2-h forecast from the RF 
(probability of VIP 3+ exceedance).  Overlaid 
in red are contours of VIP level at the valid 
time, 1830 UTC.  The contours span VIP 
levels 3 through 6 in increments of 1.  Many 
of the VIP level 3+ storms observed at 1830 
UTC developed in the preceding two hours, 
and were not predicted by CoSPA.   

(a)       

 

The final metric we show is the area 
under the receiver operating characteristic, or 
ROC, curve.  The ROC curve shows how the 
detection rate increases as a function of the 
false alarm rate (POFD).  It illustrates the 
tradeoff between hits and false alarms.  The 
area under the ROC curve, or AUC, ranges 
from 0 to 1, with 0.5 indicating a forecast with 
no skill and 1 indicating a forecast with perfect 
discrimination.  Higher AUC is better.   
 

3 RESULTS 

Before the overall statistics are 
presented, two case studies are offered for 
the CoSPA and RF forecasts.   
 

 (b)       

 
(c)       
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 (a)       
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Fig. 7. Case study over Lake Erie.  The first 
panel is the observed VIP level at 1730 UTC 
on 10 August 2009.  Panels (b) and (c) show 
the 2-h forecasts from CoSPA and the RF, 
respectively, issued at the same time.  The 
red contour overlay represents VIP level 
contours 3 through 6 at the valid time of the 
forecasts (1930 UTC).   

 

3.1 CASE STUDIES 

The first case study is during the early 
afternoon of 27 July 2009.  The 2 h time 
window covers 1630-1830 UTC.  Fig. 6 shows 
the VIP level observations at 1630 UTC 
(panel a).  The 2-h forecast from CoSPA is 
shown in panel (b).  It is overlaid with the 
observed regions of VIP level 3+ (red 
contours) at the valid time of the forecast 
(1830 UTC).  The only pixels of VIP level 3+ 
that were correctly predicted were associated 
with the small storm in extreme north central 
Georgia.  Based on CoSPA extrapolation, 
almost none of the new convective elements 
were predicted.  There were several dozen 
storms that initiated from Tennessee to South 
Carolina, resulting in many missed events.  
On the other hand, the RF probability forecast 
for the same time (panel c of Fig. 6) shows 
elevated probability of VIP level 3+ in 
northeastern GA, western NC, western SC, 
and southeast SC where new storms were 
observed at the forecast valid time.  Some of 
the storms were completely missed in central 
GA and SC, but many of them are consistent 
with localized peaks in the RF probability 
field.   

The second case study is 1730-1930 
UTC on 10 August 2009.  The three panel 
figures follow the same fields as the first case 
study, this time over Lake Erie and 
surrounding states.  The first panel shows the 
VIP level at 1730 UTC and the next panel 
shows the 2-h CoSPA forecast issued at the 
same time.  The red contours in panels (b) 
and (c) show the actual areas of VIP level 3+ 
at 1930 UTC.  There was a lot of convective 
initiation in northeast OH, western NY and 
PA.  The CoSPA forecast had difficulty 
predicting that new convection, because the 
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storms did not exist at 1730 UTC (panel a); 
the RF forecast did somewhat better (panel 
c).  The probabilities are particularly high near 
storms that already existed at the issue time, 
which is expected, but the RF forecast also 
shows isolated areas of higher probabilities 
(>1%) across northeast OH, western NY and 
PA, where new storms actually developed.  
There is certainly room for improvement in the 
RF forecast and more work must be done to 
sharpen the probability field.  However, to the 
authors’ knowledge, no other product offers a 
similarly reliable VIP level probability nowcast 
at this resolution.   
 
Table 3. Scores from the growth/decay 
regime and VIP level 1+.  BSS is not used for 
the deterministic forecasts, hence not 
applicable (NA) is used.   

Forecast 
type 

MaxC
SI 

MaxT
SS AUC BSS 

1h simple 
extrapolat
ion 

0.52 
±0.02 

0.73 
±0.01 

0.90 
±0.00 NA 

1h 
CoSPA 

0.53 
±0.01 

0.74 
±0.01 

0.88 
±0.01 NA 

1h RF 0.57 
±0.01 

0.84 
±0.01 

0.97 
±0.00 

0.57 
±0.01 

2h simple 
extrapolat
ion 

0.39 
±0.01 

0.61 
±0.02 

0.84 
±0.01 NA 

LAMP 1-
3h (2hr) 

0.17 
±0.03 

0.24 
±0.07 

0.62 
±0.05 

-0.07 
±0.01 

2h RF 0.46 
±0.01 

0.78 
±0.01 

0.95 
±0.00 

0.44 
±0.01 

 
The case studies illustrate how the RF 

probability forecast may provide uncertainty 
information during periods of rapid storm 
development when the CoSPA forecast 
needs it the most.  The deterministic CoSPA 
forecast is based almost exclusively on 
extrapolation during the first 2 h, so new 
storms are invariably missed.  The random 
forecast can produce a probability forecast 
that highlights potential areas of storm growth 
and initiation.   

The following statistics demonstrate that 
the relatively good performance of the RF is 

not limited to one or two case studies, but is 
reflected in the overall verification scores as 
well.   
 
Table 4.  Scores from the convective initiation 
regime and VIP level 1+.  There were too few 
CI events to calculate reliable BSS.  The 
simple extrapolation scores were not 
available at the time of this publication. 

Forecast 
type 

MaxC
SI 

MaxT
SS AUC BSS 

1h simple 
extrapolat
ion 

NA NA NA NA 

1h 
CoSPA 

0.006 
±0.001 

0.02 
±0.01 

0.51 
±0.01 NA 

1h RF 0.029 
±0.009 

0.56 
±0.06 

0.85 
±0.03 NA 

2h simple 
extrapolat
ion 

NA NA NA NA 

LAMP 1-
3h (2hr) 

0.016 
±0.002 

0.20 
±0.02 

0.60 
±0.02 NA 

2h RF 0.029 
±0.006 

0.56 
±0.05 

0.85 
±0.03 NA 

 

3.2 SUMMARY STATISTICS 

This section quantifies the performance 
of the 2009 RFs alongside other forecast 
benchmarks such as simple extrapolation, 
LAMP, and the CoSPA forecast.  The results 
are stratified by regime so that the skill of the 
forecasts in the convective initiation regime 
can be isolated from the growth/decay 
regime, which would otherwise dominate the 
statistics.  In Table 3, we show forecast 
metrics from the growth and decay regime 
and an intensity threshold of VIP level 1+.  In 
Table 4, we show results for the convective 
initiation regime and VIP level 1+.  Tables 5 
and 6 show the same respective skill scores, 
but for VIP level 3+.  The best score for each 
lead time (1 and 2 h) is shown in bold 
typeface.  As described in Section 2.6, the 
data were divided into six mutually exclusive 
cross validation subsets and the mean score 
for the six subsets is listed in the tables.  The 
plus/minus value following each number is a 



J10.4 14th Conference on Aviation, Range and Aerospace Meteorology 
 American Meteorological Society, Atlanta, GA 18-21 January 2010 

rough indication of uncertainty from 3 times 
the standard deviation of the six scores from 
the six cross validation sets.   
 
Table 5.  Scores from the growth/decay 
regime and VIP level 3+.   

Forecast 
type 

MaxC
SI 

MaxT
SS AUC BSS 

1h simple 
extrapolat
ion 

0.21 
±0.01 

0.73 
±0.02 

0.90 
±0.01 NA 

1h 
CoSPA 

0.23 
±0.01 

0.74 
±0.02 

0.90 
±0.01 NA 

1h RF 0.26 
±0.01 

0.87 
±0.01 

0.98 
±0.00 

0.22 
±0.04 

2h simple 
extrapolat
ion 

0.12 
±0.01 

0.56 
±0.03 

0.82 
±0.01 NA 

LAMP 1-
3h (2hr) 

0.09 
±0.00 

0.48 
±0.06 

0.74 
±0.06 

-0.01 
±0.00 

2h RF 0.19 
±0.01 

0.81 
±0.01 

0.96 
±0.00 

0.13 
±0.03 

 

4 DISCUSSION 

The RF forecasts had the best CSI and 
TSS for both convective intensity thresholds 
and both lead times.  In the growth and decay 
regime (Table 3), the CSI was 0.57 for the 1 h 
forecast and 0.46 for the 2 h forecast.  This 
beats simple extrapolation (0.52) and CoSPA  
(0.53) at 1 h and simple extrapolation at 2 h 
(0.39).  Due to a data archive issue at the 
time of publication, the 2 h CoSPA scores 
weren’t available.  These scores apply to the 
growth/decay regime for VIP level 1+ (Table 
3).  While the skills were much lower for 
convective initiation than for growth and 
decay, the relative ranking of the forecasts 
was consistent in Table 4.  For the VIP level 
3+ threshold, all scores were much lower than 
the VIP level 1+ scores, but the ranks were 
similar.  A typical CSI drop was from 0.57 to 
0.26 due to the greater difficulty of predicting 
convection at this higher threshold.   
 

Table 6.  Scores from the convective initiation 
regime and VIP level 3+.  The BSS is not 
available for the convective initiation regime 
at VIP level 3+ because the event was too 
rare for the automated calibration to give 
good results.   

Forecast 
type 

MaxC
SI 

MaxT
SS AUC BSS 

1h simple 
extrapolat
ion 

0.008 
±0.002 

0.23 
±0.02 

0.65 
±0.01 NA 

1h 
CoSPA 

0.010 
±0.003 

0.21 
±0.04 

0.61 
±0.02 NA 

1h RF 0.022 
±0.008 

0.75 
±0.02 

0.94 
±0.01 NA 

2h simple 
extrapolat
ion 

0.008 
±0.001 

0.23 
±0.02 

0.65 
±0.01 NA 

LAMP 1-
3h (2hr) 

0.008 
±0.001 

0.39 
±0.10 

0.69 
±0.07 NA 

2h RF 0.022 
±0.005 

0.75 
±0.02 

0.94 
±0.00 NA 

 
CoSPA and simple extrapolation are very 

similar, both in terms of the way they are 
constructed and their skill scores.  CoSPA 
differs only in that it has a growth and decay 
component.  Based on the performance 
results, this trending component did add 
some skill.  CoSPA’s CSI and TSS are 
modestly, but consistently, better than simple 
extrapolation (Tables 3 - 6).   

The RF forecasts were the only 
probabilistic ones available at 1 h lead time, 
so they have the only BSS results.  The other 
forecasts performance statistics are NA, or 
not applicable.   

In terms of CSI and TSS, LAMP skillfully 
predicted VIP level exceedence in all 
regimes.  But its scores were significantly 
lower than the other forecasts.  This is 
because LAMP is not designed to provide a 
VIP level exceedence forecast for a given 
lead time; it is a thunderstorm guidance 
product valid over a time window.  The 
probabilistic nature of the LAMP forecast, 
however, permitted calculation of a BSS.  The 
BSS indicated negative skill (-0.01), which 
means less skill than a constant climatological 
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probability forecast.  Admittedly, this is not a 
fair test for LAMP, but it does serve as a 
“strawman” benchmark for RF probabilistic 
nowcasts.  LAMP still had useful information 
in it.  Note the blue color, signifying high 
importance in the convective initiation regime 
(Fig. 3).   

The RF analyses presented here were 
done offline and thus don’t reflect a real time 
environment.  Since the RFs were trained on 
archived data, they were able to use the 
model analyses, as opposed to the model 
forecasts.  There is always a latency 
associated with the latest model run, so the 
best way to estimate the current conditions in 
real time is to use the best available forecast.  
It is unclear how much of an effect this had, 
but it might have helped the RF results.  
Future analyses should be performed using 
artificially-delayed model data to replicate the 
latency that is always present in real-time 
systems.   

The RF forecasts of VIP level 
exceedance are heavily weighted toward low 
probability values and the areas are fairly 
broad except for the vicinity of previously 
existing convection.  In some cases, the RF 
results look like a smoothed version of the 
extrapolation.  However, through selected 
case studies and statistics it has been shown 
that the RF prediction is more skillful than a 
simple spatial smoothing of the deterministic 
forecast.  Part of the lack of sharpness of the 
RF predictions is due to the lack of small-
scale information on convective triggers.  This 
deficiency may be remedied by including new 
fields, such as the SATellite Convection 
Analysis and Tracking system (SATCAST; 
Mecikalski and Bedka 2006; Iskenderian et al. 
2010), and improved motion vectors in the 
training process.   

As a reminder, reliable probabilistic 
nowcasts are still in their infancy, and users 
may have to expect significant uncertainty in 
them for some time to come.  While there are 
certainly many avenues that can be explored 
and possibly lead to sharper RF forecasts, a 
properly calibrated probabilistic forecast 
should be expected to look quite different 
than a deterministic one.  After all, there is a 
lot of inherent uncertainty in the deterministic 

forecasts, even though it may not be evident; 
such forecasts rarely get the convective 
details exactly right.   
 

5 SUMMARY 

In the summer of 2009, probabilistic 
nowcasts of VIP level 1 and VIP level 3 
exceedance were developed for 1 and 2-h 
lead times utilizing the random forest (RF) 
technique.  The RF nowcasts were evaluated 
by varying a probability threshold and scoring 
the resulting deterministic predictions 
alongside deterministic forecasts.  They were 
also scored as probabilistic forecasts, 
enabling comparisons of reliability and 
resolution with the LAMP thunderstorm 
guidance.  These evaluations demonstrate 
that the RF nowcasts perform comparatively 
well.  RF probabilistic nowcasts have the 
potential to add value to CoSPA by providing 
an independent analysis of the input data 
along with valuable quantitative uncertainty 
estimates that could be essential to users.   
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