Operation and Characterization of the Day/Night Band for the NPP Visible/Infrared Radiometer Suite (VIIRS)

Eric Jacobson, Daniel Fang, Anna Ibara, Morrison Lucas, Reinhard Menzel, Hanne Murphey, Felix Yin and Karen Yokoyama Raytheon Space and Airborne Systems, El Segundo, California USA

Summary

- VIIRS F1 Instrument has successfully completed all sensor characterizations and verification
- Key Day/Night Band (DNB) performance requirements successfully demonstrated
- SNR at EOL
- Dynamic Range
- Radiometric Cal. Uncertainty
- Horizontal Sample Interval
- Horizontal Spatial Resolution

VIIRS provides unprecedented ability to detect and derive information from clouds at night

VIIRS Introduction

- The Visible/Infrared Imager/Radiometer Suite (VIIRS) sensor is a nadir viewing, cross-track observing, continuously operating electro-optical imaging sensor for the National Polar-orbiting
- Measures Earth and atmosphere scene spectral radiance in the visible and infrared spectrum from an altitude of 833 km
- Data used for retrieval of operational Environmental Data
- Twenty-two (22) spectral bands (0.41-12 μm) 16 Moderate Resolution Bands (0.26 – 1.6 km)

5 Imaging Resolution Bands (0.4-0.8 km)

- 1 Visible Day/Night Band (0.742 km) Passive Cryoradiator to cool Emissive Band FPAs to 80 K
- On-board Blackbody Calibrator and Solar Diffuser/ Solar Diffuser Monitor
- On-board lossless data compression

Day/Night Band (DNB) Function

- The DNB addresses a top-priority requirement of the NPOESS VIIRS Specification: to provide visible through near-infrared spectral imagery of the Earth under illumination conditions ranging from full sunlight in daytime to quarter moon
- DNB observations are performed by a dedicated focal plane assembly (FPA) and set of processing electronics within the VIIRS sensor
- The DNB is served by the same optics and scanning system as the other 21 VIIRS spectral bands
- Digitized DNB data is multiplexed with data from the other bands in the VIIRS output stream

Day/Night Band (DNB) Key Requirements

Rqmt No	Description	Value	Units
SRV0393	Spectral Passband	0.5 - 0.9	μm
SRV0569	Minimum SNR (At the Lmin radiance specified in SRV0646)	6 (0 – 53°) 5 (>53°)	<u>-</u>
SRV0646	Dynamic Range — Lmin to Lmax (These are in-band FWHM radiances)	3e-5 to 200	W/m ² /sr
SRV0614	Radiometric Calibration Uncertainty High Gain Stage: at Lmin for stage; at Lmax for stage Mid Gain Stage: at Lmin for stage; at Lmax for stage Low Gain Stage: at Lmin for stage; at 0.5 Lmax for stage	100, 30 30, 10 10, 5	% % %
SRV0564 SRV0565	Horizontal Sample Interval, Track & Scan Directions (Applies across full Earth scan)	742 ± 5%	meters
SRV0050	Horizontal Spatial Resolution, Track & Scan Directions (Half cycle of scene spatial frequency at which MTF = 0.5)	< 0.800	km

SNR at Stressing Lmin Shows Positive Margin at all Agg Modes

➤ Two identical high-gain stages allow

■ No TDI, 45:1 ND Filter

 Operating temperature -20°C 672 Sub-pixel Detectors in Track Direction

Concept of Operation

■ 32 pre-programmed aggregation modes cycled between Nadir and EOS provide near constant

Verification Approach to Dynamic Range and Signal-to-Noise Ratio

- Verification for the DNB Dynamic Range and SNR requirements relies on a validated Radiometric Model to predict end-of-life performance under worst-case on-orbit conditions
- The Radiometric Model is based on component and subassembly measurements and nominal design parameters that are correlated with measurements of end-to-end signal, noise and gain made at the sensor level during ambient and thermal vacuum testing
- On-orbit/end-of-life conditions modeled include: (1) optical transmission degradation, (2) worst-case on-orbit temperatures and (3) increases in detector dark current
- The Radiometric Model spectrally integrates the following inputs:
- Lunar spectral radiance computed using MODTRAN (0.4 1.0 μm) for Lmin
- Spectrally flat reference radiance for Lmax at 5.00e-5 W/cm²/sr/nm
- Measured mirror reflectance vs λ
- Measured bandpass filter data vs λ Measured dichroic reflectance vs λ
- Measured ND filter transmission data for low-gain stage vs λ
- Measured detector QE vs λ
- Performance requirements are verified with two model settings SNR requirement for HG stages: Lmin reference radiance at EOL
 - Saturation requirement for LG stage: Lmax reference radiance at BOL

Dynamic Range On-Orbit Predictions Satisfy Requirements

- DNB model was run at Lmax for BOL at a FPA temperature of 251 K
- Model uncertainty estimated from correlation errors is very small (~1%)

Lmin SNR On-Orbit Predictions

- The SNR at Lmin is predicted using the lunar reference spectrum for Lmin and the EOL optical
- SNR is given by the following equation:

$$SNR = \frac{N_{\text{TDI}} N_{\text{agg}} S}{\sqrt{N_{\text{TDI}} N_{\text{agg}} S + N_{\text{TDI}} N_{\text{agg}} \sigma_{\text{dark}}^2 + \sigma_{\text{read}}^2 + \sigma_{\text{elec}}^2}}$$

SNR margin is given by the following equation:

$$\%SNRmargin = 100 \cdot \left(\left(\frac{SNR}{SNR_{reqmt}} \right) - 1 \right)$$

- **S** = Signal (e-/pixel) $N_{TDI} = # \text{ of TDI stages}$ $N_{AGG} = #$ of aggregated detectors = Dark noise (e-/pixel)
- σ_{read}^2 = Readout noise (e-/pixel) $\%SNRmargin = 100 \cdot \left(\left(\frac{SNR}{SNR_{reqmt}} \right) - 1 \right)$ σ_{elec}^2 = Electronics noise (e-/pixel)
- SNR margin is computed for all 32 aggregation modes which correspond to scan angles from 0 to 56.063 degrees from nadir

- Model uncertainty was estimated from correlation errors (~ 1%) and uncertainties in the dark current increase at EOL due to radiation effects
- Uncertainties in the magnitude of the radiation effects are large due to limited availability of relevant data and accelerated radiation dosing of tested parts

DNB Radiometric Calibration Uncertainty

- Absolute radiometric calibration uncertainty (RCU) is determined by a combination of test, analysis and engineering assessment
- Reported at the one-sigma level

** MGS and HGS errors do not apply except through bootstrap

Radiometric Calibration Uncertainty Shows Positive Margin

VIIRS Electronics Module

Gain Stage	Radiance Level	Performance	Requirement
LGS	0.5*Lmax	3.5%	5%
LGS	Lmin	3.5%	10%
MGS	Lmax	7.8%	10%
MGS	Lmin	7.8%	30%
HGS	Lmax	11%	30%
HGS	Lmin	11%	100%

Dominant Error Sources:

LGS: 1.5% Solar Diffuser Radiance, 2% SIS100 Radiance, 2% Agg Mode Variation MGS: Additional 7% for Bootstrap Gain Calibration

HGS: Additional 10% for Bootstrap Gain Calibration

Spatial Performance: Horizontal Sample Interval

- HSI (horizontal sampling interval) is the distance, as measured on the ground, between adjacent samples reported by the VIIRS sensor
- In-Scan (SRV0565): HSI shall be within 5% of 742m throughout the scan • In-Track (SRV0564): HSI shall be within 5% of 742m throughout the scan

Changes in HSI are due to aggregation mode switching -32 pre-Nadir (< 0 deg) -32 post-Nadir (> 0 deg)

Spatial Performance: Horizontal Spatial Resolution

Compliant to PS154640-101D and RDW W114

the longest spatial wavelength at which the sensor MTF has dropped to 0.5

■ HSR (horizontal spatial resolution) is the distance, on the Earth's surface, corresponding to one-half

■ SRV0050: HSR in track and cross-track direction shall achieve less than 0.800 km throughout the scan

This paper was funded by Raytheon and was not sponsored by the NPOESS Integrated Program Office. Approved for public release. Copyright © 2010 Raytheon Company. SAS IMS 01/10 4263512