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ABSTRACT

The equatorial atmosphere harbours a large spectrum of waves that are trapped near and

travel along the equator. These equatorially trapped waves interact nonlinearly with each

other and with the planetary-barotropic waves. Here, we consider advected shallow water

equations that represent interactions of these equatorial waves with a prescribed meridional-

barotropic shear. We show that in the presence of an easterly shear, the eigenfrequencies

of westward propagating waves decrease compared to their free analogues. The effect is

more significant for larger wavenumbers. However, for most eastward going waves with high

wavenumbers, the eigenfrequencies increase compared to the shear-free case. We emphasize

the case of Kelvin waves, which are believed to play a central role in organized tropical con-

vective systems. We demonstrate that unlike their free analogues that have no meridional

velocity, the shear-forced Kelvin waves exhibit a weak meridional velocity, which, neverthe-

less, induces a large contribution to the flow convergence as observed in nature. Low-level

convergence of moisture is believed to play a central role in sustaining moist convection in

tropical convective systems. In addition, the shear-Kelvin wave interaction excites three

other equatorial waves: a Rossby wave, eastward and westward gravity waves of weaker

strength but their phase speeds and wave structures despite some quantitative differences,

resemble those of the dry waves. We show that the effect of the shear is more significant

for larger wavenumbers and/or stronger shears. Furthermore, we look at the interactions

between the meridional shear and other equatorial waves. We show that the westerly shear

makes the westward Yannai wave and some Rossby waves unstable and interestingly the

stable Rossby waves move eastward rather than westward. We demonstrate that in the

sheared environment some waves are more/less trapped near the equator than their free
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counterparts. This can significantly modify the way in which the equatorial waves interact

with the extratropical waves, i.e. the tropical-extratropical interactions and teleconnection

patterns of weather and climate.

1. Introduction

Most of the Earth’s energy intake from the sun is absorbed within the tropical belt and

then redistributed to the rest of the globe through various atmospheric and oceanic flow

patterns. The organized deep convection is a major source of the energy for tropical cir-

culations derived by latent heat associated with the phase change of water in the tropics.

Therefore, the study of tropical dynamics is essential for understanding the climate system

and for improving climate and weather prediction models and it is a topic of interest for the

past few decades. However, the general circulation models (GCM’s) represent poorly the

Madden-Julian oscillation (MJO) and the convectively coupled waves which are believed to

impact the mid-latitude weather and climate. These equatorial waves are trapped near the

equator and travel along it and they interact nonlinearly with each other and with the extra-

tropical waves. Thus, in order to understand the interaction between these equatorial waves

and the extra-tropics some simplified models are developed to capture the main features of

these dynamics.

In this work we are interested in the interactions of these equatorial waves with two

barotorpic background shears; an equatorial easterly and an equatorial westerly wind mim-

icking the zonal wind in winter at 200 mb, over the western Pacific ocean and eastern Pacific

ocean respectively, Zhang and Webster (1989). In section 2, we use the two mode model,
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representing the interactions between the barotorpic (vertically averaged) mode and the

first baroclinic mode obtained by Galerkin projection of the hydrostatic beta-plane primi-

tive equations (Majda and Biello 2003). In section 3, we solve the forced baroclinic wave

system numerically by applying a meridional Galerkin projection introduced by Khouider

and Majda (2001) which gives a one dimensional advected system.

In section 4, we do linear analysis of the meridionally projected system by assuming

wavelike solutions that travel zonally along the equator. We compare the frequencies and

the meridional structures of the forced waves with their free analogues. We show that in the

sheared environment, the frequencies of most of the eastward waves are increased while for

the westward waves, they are decreased. In addition, westward mixed Rossby-gravity (MRG)

waves and some Rossby waves become unstable in the presence of the westerly shear. We

emphasize the case of Kelvin waves, which play an important role in organized tropical

convective systems. Unlike their free analogues where there is no meridional velocity, the

shear-forced Kelvin waves exhibit a weak meridional velocity. This weak meridional velocity

leads to a flow convergence/divergence at the equator as observed in nature.

In chapter 5, we evolve the one dimensional advected system in time by using the second

order central scheme of Nessyahu and Tadmor (1990) to capture the dynamical interaction

of the equatorial waves with the imposed barotropic shear.The forced waves have the same

frequencies and meridional structures as those obtained by the linear analysis in section 4.

In addition, we demonstrate that each symmetric (anti-symmetric) equatorial wave excites

other symmetric (anti-symmetric) equatorial waves with the same wavenumber which more

or less resemble their free cases. In this section, we consider mainly the two cases of the

forced Kelvin and Rossby waves. Moreover, due to nonlinear interaction between the waves
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and exciting other waves, all of them become unstable in presence of westerly shear.

2. Simplified Model

a. Barotopic-first baroclinic model

We consider the primitive equations on an equatorial beta-plane (Majda 2003)

DVH

Dt
+ βyV⊥

H = −∇HP

DΘ

Dt
+

N2θ0

g
W = 0 (1)

∂P

∂z
= g

Θ

θ0

divHVH + Wz = 0

with rigid boundary conditions

w(x, y, z, t)|z=0,H = 0, (2)

where z = 0 corresponds to the surface of the Earth and z = H ≈ 16km is the hight

of troposphere. Here VH = (U(x, y, z, t), V (x, y, z, t)) is the horizontal velocity field with

V⊥
H = (−V, U), W is the vertical velocity and Θ is the potential temperature. N = 0.01

is the Brunt-Vaisala buoyancy frequency, g = 9.8 ms−2 is the gravitational acceleration,

β = 2.2804× 10−11s−1m−1 is the Coriolis parameter coefficient and θ0 = 300K is a reference

potential temperature. In addition,

D

Dt
≡ ∂

∂t
+ U

∂

∂x
+ V

∂

∂y
+ W

∂

∂

is the material derivative and divH , and ∇H are the horizontal divergence and horizontal

gradient respectively. We consider the crude vertical approximation (Biello and Majda 2003;
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Khouider and Majda 2005)




VH

P



 (x, y, z, t) ≈




v̄

p̄



 (x, y, t) +




v

p



 (x, y, t) cos(
πz

H
)




W

Θ



 (x, y, z, t) ≈




w

θ



 (x, y, t) sin(
πz

H
) (3)

where the barotropic modes are the vertically averaged quantities over the height of the

troposphere, H , obtained by

f̄ =

∫ H

0

f(z)dz.

Note that the barotropic components of the vertical velocity, W , and Θ vanish thanks to

the rigid boundary conditions and the hydrostatic balance.

Next, the barotropic-first baroclinic system equations are obtained by applying the

Galerkin projection of the primitive equations on the barotropic and first baroclinic mde.

The projection on the first baroclinic mode is derived by

〈f, g〉 =
1

H

∫ H

0

f(z)g(z)dz,

where g(z) = cos(πz
H ) for the horizontal velocity, VH, and the pressure, P and g(z) = sin(πz

H )

for the potential temperature, Θ, and the vertical velocity, W while the projection on the

barotropic mode is obtained in the same way with g(z) = 1. Moreover, in the remaining

of the paper, the equations are non-dimensionalized using c = NH
π ≈ 50ms−1 as velocity

scale, L = (cβ−1)1/2 ≈ 1500km as the length scale, T = L
c ≈ 8h as the time scale and

ᾱ = HN2θ0
πg ≈ 15K as the temperature scale. Therefore, the barotorpic-first baroclinic
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interacting systems are obtained by, in non-dimensional units,

∂v̄

∂
+ v̄.∇v̄ + yv̄ + ∇p̄ = −1

2
(v.∇v + vdivv)

divv̄ = 0 (4)

and

∂v

∂t
+ v̄.∇v −∇θ + yv⊥ = −v.∇v̄ (5)

∂θ

∂t
+ v̄.∇θ − divv = 0,

respectively. Here, we are interested in the interaction of equatorially trapped waves

(solution of (5) when v̄ = 0) with a prescribed barotropic flow. Thus, we consider system (5)

forced by barotropic flow by assuming that the feedback of the associated baroclinic response

in (4) is negligible. This is accurate to the first order approximation if this response is smaller

than the imposed barotropic flow.

b. Imposed barotropic Shear background

We prescribe two barotropic shears, v̄ = (ū(y), 0) where ū(y), mimics the equatorial jet

stream: an equatorial easterly shear with magnitude of -10 ms−1 at the equator and 40 ms−1

in mid-latitudes which is a typical meridional distribution of the zonal wind at 200 mb over

the western Pacific ocean and an equatorial westerly shear with magnitude 10 ms−1 at the

equator and 30 ms−1 in mid-latitudes which is similar to the zonal wind over eastern Pacific

ocean in winter at 200 mb Zhang and Webster (1989). The two zonal winds are formulated
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by

ūe(y) = ū0(
3

4
y2 − 1) exp(−y2/16)

ūw(y) = ū0(
5

12
y2 + 1) exp(−y2/16)

where ū0 is the strength of the wind at the equator fixed to 10 ms−1. The meridional

distribution of these prescribed shears are shown in figure (1). By considering this barotropic

shear, system (5) simplifies to

∂u

∂t
+ ū(y)

∂u

∂x
− yv − ∂θ

∂x
= −v

∂ū

∂y
(y)

∂v

∂t
+ ū(y)

∂v

∂x
+ yu − ∂θ

∂y
= 0 (6)

∂θ

∂t
+ ū(y)

∂θ

∂x
− (

∂u

∂x
+

∂v

∂y
) = 0.

In previous work (Ferguson et al., 2009), we have shown that the effect of the wind on

equatorially trapped waves, is mainly due to gradient of the wind. A constant zonal wind

has no other effect than just the obvious Doppler shift.

Note that Zhang-Webster studied the effect of these two shears, a westerly and an easterly

wind, using the shallow water equations introduced by Matsuno (1966) on an equatorial

beta-plane

∂u

∂t
+ ū(y)

∂u

∂x
− yv − ∂θ

∂x
+ v

∂ū

∂y
= 0,

∂v

∂t
+ ū(y)

∂v

∂x
+ yu − ∂θ

∂y
= 0, (7)

∂θ

∂t
+ ū(y)

∂θ

∂x
+ yū(y)v − (

∂u

∂x
+

∂v

∂y
) = 0.

which is similar to the shallow water equation derived by projecting primitive equations

into the barotropic-first baroclinic mode except for the extra term yū(y)v in the potential
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temperature equation, θ. To seek for wave-like solutions that move along the equator,

Zhang and Webster (1989) expanded the governing equations (7) in terms of the first few

equatorially trapped waves of Matsuno (1966), that are solutions to linear-enforced equations

when ū(y) = 0.

Here, we extend this methodology by using a more general and simpler treatment where

the the solutions are Galerkin projected in the meridional direction onto the parabolic cylin-

der functions. In addition to the more standard linear theory, in order to capture the

dynamical interactions between the barotropic mode and these equatorial waves, we evolve

the meridionally projected system, from an initial state consistent of a given wave-mode

solution by a direct integration using the high-order numerical scheme, the central scheme of

Nessyahu and Tadmor (1989). Interestingly, these interactions excite other equatorial waves

as we will discuss in section 5.

c. Energy source and energy sink

Here, we consider a channel along the equator with periodic boundary condition in zonal

direction and the walls located at Y0 = 5000km north and south of the equator. The kinetic

energy associated with the first baroclinic mode is

Ec(t) =
1

2

∫ Y0

−Y0

∫ X

0

u2 + v2 + θ2dxdy (8)

therefore, the energy tendency is given by

d

dt
Ec(t) = −2(

∫ X

0

vθ
∣∣∣
Y0

dx +

∫ Y0

0

∫ X

0

uv
∂ū

∂y
dxdy) (9)

using the fact that the barotropic flow is non-divergent and periodic boundary conditions
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in the zonal direction. This shows that the energy tendency depends on the interaction

between u, v and the gradient of the barotropic wind (interaction energy tendency) and also

depends on the structure of the wave at the channel walls (boundary energy tendency). This

kinetic energy is conserved if the barotropic wind is constant and if the waves are sufficiently

trapped around the equator. Therefore, for a forced wave which is not sufficiently trapped,

the Dirichlet boundary condition is not a reasonable assumption.

3. Numerical methodology

In this section, we present an efficient numerical strategy for equatorial waves; intro-

duced by Khouider and Majda (2001), to approximate system (6) numerically based on the

Galerkin projection in the meridional direction onto the parabolic cylinder functions. First,

we review parabolic cylinder functions and their properties, Hermite polynomials and Gauss-

Hermite quadrature. Then, we apply the meridional truncation strategy to simplify the two

dimensional advected shallow water equations (6) to a one dimensional non-homogeneous

advection system. Then, we solve the obtained system by the 2nd order non-staggered cen-

tral scheme introduced by Nessyahu and Tadmor (1989). Finally, we present the properties

of the equatorial waves, like their trapping and phase speed, in a sheared environment.

a. Parabolic cylinder functions and Gauss-Hermite quadrature

Parabolic cylinder functions are the well-known solutions of the harmonic oscillator

∂2

∂η2
f(η) +

1

2
(2m + 1 − η2

2
)f(η) = 0 (10)
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which are given by

Dm(η) = 2−m/2Hm(
η√
2
)e−η2/4 (11)

where Hermite polynomials, Hm(ξ), are defined by

Hm(ξ) = (−1)meξ2 dme−ξ2

dξm
for m = 0, 1, · · · .

They are obtained by the following recursive formula

Hj+1(ξ) − 2ξHj(ξ) + 2jHj−1(ξ) = 0, H0(ξ) = 1, H1(ξ) = 2ξ.

In addition, they form an orthonormal basis for square integrable functions. If φN(y) =

(N !
√

π)
− 1

2 DN(
√

2y), then

(φN ,φM) =

∫ ∞

−∞
φN(y)φM(y)d(y) = δN,M . (12)

We introduce the lowering and raising operators of quantum mechanics. Then,

L−φN(y) = −(2(N + 1))1/2φN+1(y),

L+φN(y) = (2N)1/2φN−1(y).

The Gauss-Hermite quadrature is formulated by

∫ ∞

−∞
F (y)dy =

N∑

j=1

F (yj)H̄j, H̄j = Hje
y2

j , j = 1, · · · , N (13)

where yj , j = 1, 2, · · · , N are the N zeros of the Hermite polynomial HN for a given N and

Hj ’s are the standard Hermite-Gauss quadrature coefficient given by

Hj =
2N−1N !

√
π

N2(HN−1(yj))2
.
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See Ralston (1987) for more details. This approximation is exact if F (y) = p2N−1(y)e−y2

where p2N−1 is a polynomial of degree 2N − 1. Therefore, the parabolic cylinder functions

form an orthonormal basis for L2(R2) with the discrete inner product,

〈f, g〉N =
N∑

j=1

f(yj)g(yj)H̄j,

which means

〈φm,φl〉N = δml, 0 ≤ m, l ≤ N − 1. (14)

Therefore, for any given function f ∈ L2(R2), the Hermite interpolation is defined as the

projection onto the discrete space spanned by the orthonormal basis φl, l = 0, . . . , N − 1.

We set,

PNf(y) =
N−1∑

l=0

f̃lφl(y), (15)

where f̃l = 〈f,φl〉N , l = 0, . . . , N − 1. Thus, this approximation is exact, PNf = f , if f is

in the form pN−1e−y2/2.

b. Galerkin Projection and its application to shallow water equations

For any given square integrable function u(y), we use the low order meridional projection

described above to write u in terms of the discrete orthonormal basis function φl, i.e.,

u(y) ≈ PNu(y) =
N−1∑

l=0

ũlφl(y), for ũl = 〈u,φl〉N , l = 0, . . . , N − 1. (16)

By using the lowering and rising operators and their identities, we write an explicit
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formula for PN
∂
∂yPNu,

PN
∂

∂y
PNu = PN

N−1∑

l=0

1

2
ũl(L+ + L−)φl(y)

= PN

N−1∑

l=0

1√
2
ũl(l

1/2φl−1(y) − (l + 1)1/2φl+1(y)) (17)

=
N−1∑

l=0

1√
2
(ũl+1(l + 1)1/2 − ũl−1l

1/2)φl(y)

and similarly,

PNyPNu(y) =
N−1∑

l=0

1√
2
(ũl+1(l + 1)

1
2 + ũl−1l

1
2 )φl(y) (18)

where we use PNφl = φl for l = 0, · · · , N − 1, PNφN ≡ 0 and also the convention ũ−1 =

ũN ≡ 0.

For the first equation of system (6),

∂u

∂t
+ ū(y)

∂u

∂x
− yv − ∂θ

∂x
= −v

∂ū

∂y
(19)

we project u, v and θ onto the first N meridional modes, i.e,





u

v

θ




(x, y, t) =

N−1∑

l=0





ũl

ṽl

θ̃l




(x, t)φl(y)

where

f̃l(x, t) =
N∑

j=1

f(x, yj, t)φl(yj)H̄j.

So, we rewrite equation (19) in discrete form

N−1∑

l=0

[
∂ũl

∂t
+ ū(y)

∂ũl

∂x
− ∂θ̃l

∂x
− [y − ūy]ṽl

]

φl(y) = 0 (20)
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and we take the following integral on y-direction,

∫ ∞

−∞
φm(y)

(
N−1∑

l=0

[
∂ũl

∂t
+ ū(y)

∂ũl

∂x
− ∂θ̃l

∂x
− [y − ūy]ṽl

]
φl(y)

)
dy = 0 (21)

for m ∈ {0, · · · , N − 1}. By using the orthonormality (14) and identity (18), we get

∂ũm

∂t
+

N−1∑

l=0

∂ũl

∂x

∫ ∞

−∞
ū(y)φm(y)φl(y)dy − ∂θ̃m

∂x
− 1√

2
(ṽm+1(m + 1)1/2 + ṽm−1(m)1/2)

+
N−1∑

l=0

ṽl

∫ ∞

−∞
ūyφm(y)φl(y)dy = 0. (22)

If we set

ūm,l =

∫ ∞

−∞
ū(y)φm(y)φl(y)dy =

N∑

j=1

ū(yj)φm(yj)φl(yj)Hje
y2

j ,

and

ûm,l =

∫ ∞

−∞
ūy(y)φm(y)φl(y)dy =

N∑

j=1

ūy(yj)φm(yj)φl(yj)Hje
y2

j ,

then equation (22) can be formulated as

∂ũm

∂t
+

N−1∑

l=0

∂ũl

∂x
ūm,l −

∂θ̃m

∂x
− 1√

2
(ṽm+1(m + 1)1/2 + ṽm−1(m)1/2) +

N−1∑

l=0

ṽlûm,l = 0. (23)

Similarly, we write the second and third equations in (6) in discrete form

∂ṽm

∂t
+

N−1∑

l=0

∂ṽl

∂x
ūm,l −

1√
2
(θ̃m+1(m + 1)1/2 − θ̃m−1(m)1/2)

+
1√
2
(ũm+1(m + 1)1/2 + ũm−1(m)1/2) = 0, (24)

∂θ̃m

∂t
+

N−1∑

l=0

∂θ̃l

∂x
ūm,l −

∂ũm

∂x
− 1√

2
(ṽm+1(m + 1)1/2 − ṽm−1(m)1/2) = 0. (25)

Therefore, primitive equations on the beta-plane (6) can be written as a one-dimensional

advection system,

∂W̃

∂t
+ A

∂W̃

∂x
+ (B + C)W̃ = 0 (26)
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where W̃ = (ũ0, · · · , ũN−1, ṽ0, · · · , ṽN−1, θ̃0, · · · , θ̃N−1)′ and the constant coefficient matrices

A, B, C ∈ M3N×3N are given by

A =





A1 0 −IN

0 A1 0

−IN 0 A1




, B = − 1√

2





0 B1 0

−B1 0 B2

0 B2 0




, C =





0 C1 0

0 0 0

0 0 0





where

A1 =





ū0,0 ū0,1 · · · ū0,N−1

ū1,0 ū1,1 · · · ū1,N−1

...

ūN−1,0 ūN−1,1 · · · ūN−1,N−1





, IN =





1 0 · · · 0

0 1 · · · 0

...
. . .

0 0 · · · 1





,

B1 =





0 1 0 0

1 0
√

2

√
2

. . . . . .

. . . 0
√

N − 1

0
√

N − 1 0





, B2 =





0 1 0 0

−1 0
√

2

−
√

2
. . . . . .

. . . 0
√

N − 1

0 −
√

N − 1 0





,

C1 =





û0,0 û0,1 · · · û0,N−1

û1,0 û1,1 · · · û1,N−1

...

ûN−1,0 ûN−1,1 · · · ûN−1,N−1





.
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c. Radiation condition

In order to avoid spurious waves introduced by numerical approximation, we need to

impose the following radiation conditions proposed by Majda-Khouider (2001), i,e.

ṽN−1 = 0, θ̃N−1 = −ũN−1, θ̃N−2 = −ũN−2. (27)

If we neglect the forcing terms in equations (23)-(25), we get

∂ũk

∂t
− ∂θ̃k

∂x
− 1√

2
(ṽk+1(k + 1)1/2 + ṽk−1(k)1/2) = 0, (28)

∂ṽk

∂t
− 1√

2
(θ̃k+1(k + 1)1/2 − θ̃k−1(k)1/2) +

1√
2
(ũk+1(k + 1)1/2 + ũk−1(k)1/2) = 0, (29)

∂θ̃k

∂t
− ∂ũk

∂x
− 1√

2
(ṽk+1(k + 1)1/2 − ṽk−1(k)1/2) = 0. (30)

By using the radiation condition ṽN−1 = 0 for k = N − 1 in equation (29), we get the

radiation condition θ̃N−2 = −ũN−2. Therefore, we omit this equation for N − 1 in system

(26) and also this equation for k = N − 2, N − 3 becomes

∂ṽk

∂t
+

2√
2
ũk+1(k + 1)1/2 +

k1/2

√
2

(ũk−1 + θ̃k−1) = 0. (31)

However, equations (28) and (30) lead to the two conflicting equations

∂ũk
∂t + ∂ũk

∂x − 1√
2
(ṽk+1(k + 1)1/2 + ṽk−1(k)1/2) = 0,

∂ũk
∂t + ∂ũk

∂x + 1√
2
(ṽk+1(k + 1)1/2 − ṽk−1(k)1/2) = 0

for k = N − 2, N − 1 after using radiation condition θ̃k = −ũk. We handle this problem by

averaging these equations to arrive at (Khouider and Majda 2008)

∂ũk

∂t
+

∂ũk

∂x
− 1√

2
ṽk−1(k)1/2 = 0. (32)
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The same holds for the forced cases with k = N − 2, N − 1 and implementing these

radiation conditions to equations (23) and (25) gives

∂ũk

∂t
+

N−1∑

l=0

∂ũl

∂x
ūk,l +

∂ũk

∂x
− 1√

2
(ṽk+1(k + 1)1/2 + ṽk−1(k)1/2) +

N−1∑

l=0

ṽlûk,l = 0,

∂ũk

∂t
−

N−3∑

l=0

∂θ̃l

∂x
ūk,l +

∂ũM−2

∂x
ūk,M−2 +

∂ũM−1

∂x
ūk,M−1 +

∂ũk

∂x
+

1√
2
(ṽk+1(k + 1)1/2 − ṽk−1(k)1/2) −

N−1∑

l=0

ṽlu
∗
k,l = 0.

Therefore, we average these equations to get

∂ũk

∂t
+

1

2

N−3∑

l=0

(
∂ũl

∂x
− ∂θ̃l

∂x
)ūk,l +

∂ũM−2

∂x
ūk,M−2 +

∂ũM−1

∂x
ūk,M−1 +

∂ũk

∂x
−

1√
2
ṽk−1(k)1/2 +

1

2

N−1∑

l=0

ṽl(ûk,l − u∗
k,l) = 0. (33)

d. Free waves

For the free case, with no barotropic shear, we analytically derive the equatorially trapped

waves, Majda (7), from the system (26) obtained by meridional projection. First, we intro-

duce the known Riemann invariant variables, q and r as

q =
1√
2
(u − θ) and r = − 1√

2
(u + θ). (34)

Therefore, we rewrite equations (23)-(25) in terms of q and r

∂q̃k

∂t
+

∂q̃k

∂x
− (k)1/2ṽk−1 = 0

∂ṽk

∂t
+ (k + 1)1/2q̃k+1 − k1/2r̃k−1 = 0 (35)

∂r̃k

∂t
+

∂r̃k

∂x
+ (k + 1)1/2ṽk+1 = 0 for k = 1, 2, . . . .
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These equations decouples into a hierachy of systems whose solutions are the equatorially

trapped waves as follows. We have

a. Kelvin waves as the solutions to a single PDE when k = 0

∂q̃0

∂t
+

∂q̃0

∂x
= 0 (36)

b. mixed Rossby-gravity waves as the solutions of, when k = 1,

∂q̃1

∂t
+

∂q̃1

∂x
− ṽ0 = 0

∂ṽ0

∂t
+ q̃1 = 0. (37)

which couples v0 and q1 and

c. Gravity waves and Rossby waves which are the solution of a complete system coupling

qk, vk−1 and rk−2, for k ≥ 2,

∂q̃k

∂t
+

∂q̃k

∂x
− k1/2ṽk−1 = 0

∂ṽk−1

∂t
+ k1/2q̃k − (k − 1)1/2r̃k−2 = 0 (38)

∂r̃k−2

∂t
− ∂r̃k−2

∂x
− (k − 1)1/2ṽk−1 = 0 for k ≥ 2

This shows that for N = 3, we obtain six equatorial waves, one Kelvin wave, two MRGs

and three Rossby and Gravity waves analytically and for any additional mode, N , we obtain

three Rossby and Gravity waves of higher modes. Therefore, for any N , system (35) has

3N − 3 solutions which defines the equatorially trapped waves. Therefore, this methodol-

ogy of projecting onto the parabolic cylinder functions is equivalent to the projection onto

the equatorially trapped normal modes of Matsuno (1966) used for example by Zhang and
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Webster (1989), yet it is much simpler and more general in the sense that, it can be applied

to an arbitary PDE system that depends on y.

4. Linear analysis of forced equatorially trapped waves

We consider a plane wavelike solution for system (26) on the form of

W̃ (x, t) = Ŵ exp(i(kx − ωt)) (39)

where i2 = −1, k is the zonal wavenumber and ω is the frequency. This leads to solving

[
(kA − i(B + C)) − ωI

]
Ŵ = 0 (40)

which requires to find the eigenvalues ω(k) and and eigenvectors Ŵ for the matrix M =

kA − i(B + C).

a. Constant wind

In the presence of constant wind, ū(y) = ū0, the system (6) is a purely linear β-plane

shallow water system advected by a constant wind. So, the solutions of this system are iden-

tical to their free counterparts with the Doppler-shifted frequencies ω̂ = ω − kū0. However,

the equatorial waves are quite affected if the constant wind is applied to the shallow water

equation (7) where the non-Doppler term, vŪy is not zero. Zhang-Webster (1989) demon-

strate analytically the effect of a constant wind is considerable for Rossby waves, moderate

for westward Mixed Rossby-Gravity wave and negligible for other waves. In addition, they

show that in westerlies (easterlies) the eigenfrequencies are larger (smaller) and the waves
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are less (more) trapped around the equator.

b. Sheared environment

In this section, we consider the effect of the equatorial easterly and equatorial west-

erly shear on the equatorially trapped waves. Since the barotropic shear is symmetric in

meridional direction, we can decouple system (40) into a symmetric sub-system and an

anti-symmetric sub-system which helps to identify the forced equatorial waves more clearly.

1) Frequency

Here, we present the eigenfrequencies of the forced equatorial waves in the easterly flow

(EE) and in the westerly flow in Figure 2 and 3 respectively. The eigenfrequncies shown are

the relative frequencies including the Doppler effect since there is no obvious universal way

to obtain the absolute frequencies explicitly.

For Kelvin waves the eigenfrequencies are larger in EW but smaller in EE than the fre-

quencies of the free Kelvin wave. For the eastward Gravity wave the frequencies are increased

compared to free waves for large wavenumbers and are decreased for small wavenumbers and

lower meridional modes, N. This is more significant for EW shear. However, for west-

ward Gravity waves the eigenfrequencies are decreased independent of the wavenumbers and

meridional modes.

Also, for some parameter values of ū0 or k, the matrix M may have non-real eigenvalues,

resulting in unstable and/or damped waves. The westward mixed Rossby-Gravity waves

(MRG) are stable in EE and for small wavenumber k ≤ 7 the eigenfrequencies are smaller
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while for larger wavenumbers the eigenfrequencies are greater than the free case. However,

the westward MRG become unstable in EW. By letting ω = ωr + iωi the wave solution of

(39) becomes

W̃ (x, t) = Ŵ exp(ωit) exp(i(kx − ωrt)) (41)

where exp(ωit) is the wave growth and ωr is the wave phase. This will be discussed further

later in this work. In the presence of EE, the Rossby waves, both symmetric and anti-

symmetric, are stable and for higher modes the frequencies are positive with a positive k,

i.e, the waves propagate eastward rather than westward in the shear background. In EW

background, three Rossby waves become unstable two symmetric and one anti-symmetric

and their eigenfrequencies are conjugates. Therefore, in each pair one wave is growing and

one wave is damping.

There are three main differences between the results obtained by the vertical projection

model compared to Zhang and Webster’s results. The first difference is that for most of the

Rossby waves in both EE and EW the relative direction of propagation changes sign, i.e, the

waves move eastward. The second difference is that for EW some Rossby waves and the west-

ward MRG waves become unstable. The third difference is that in eastward Gravity waves

N = 0 with small wavenumber have smaller eigenfrequencies than their free counterparts

while in Zhang-Webster they poses larger frequencies independent of wavenumber.

2) Physical structure of the forced waves

Here, we study the changes in physical structure and trapping factor of the sheared forced

equatorial waves.
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• Non-Kelvin aspect of Kelvin waves

Here, we provide an analytic proof of the generation of meridional velocity for Kelvin

wave in presence of a background shear by introducing two new variables ξ = yu− ∂θ
∂y

and ν = yθ − ∂u
∂y as a measure of geostrophic unbalance which are zero for the free

Kelvin waves. Thus, we rewrite the system (6) as a new system using the five variables

(u, v, θ, ξ, ν) (Ferguson et al. 2009):

∂u

∂t
+ ū

∂u

∂x
− ∂θ

∂x
− yv = −v

∂ū

∂y
∂v

∂t
+ ū

∂v

∂x
+ ξ = 0

∂θ

∂t
+ θ̄

∂

∂x
− (

∂u

∂x
+

∂v

∂y
) = 0 (42)

∂ξ

∂t
+ ū

∂ξ

∂x
− ūy

∂θ

∂x
− ∂ν

∂x
= −∂2v

∂y2
+ y2v + v̄u + vū − v

∂(ūy)

∂y
∂ν

∂t
+ ū

∂ν

∂x
− ūy

∂u

∂x
− ∂ξ

∂x
= v̄θ − v + Vy ·∇ū + vūyy

A Kelvin wave with the known solutions (u, v, θ, ξ, ν) = (u(x, y), 0,−u(x, y), 0, 0) in a

background shear excites ξ through term ūy
∂θ
∂x in the fourth equation in (42) which

shows the interaction of the shear gradient with the potential temperature. This ξ,

induces a non-zero meridional velocity, in second equation of (42), consequently a non-

zero ν. It’s easy to see that the strength of this meridional velocity depends on the

shear gradient and the wavenumber k through ūy
∂θ
∂x . This wavenumber dependency is

shown in Figure 4 as the relative strength of each components, u, v and θ obtained by

frel = ‖f‖2

Ec
where

‖f‖2 =
1

2

∫ ∞

−∞
f(x, y)2dy
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and

Ec =
1

2

∫ ∞

−∞
(u2 + v2 + θ2)dy.

Note that this effect is more significant for the easterly shear where shear gradient is

stronger compared to the westerly shear.

However, this weak meridional velocity induces remarkably strong convergence and/or

divergence regions, shown in figure (5) with k = 5, which is consistent with the ob-

servation in (Roundy 2008). Furthermore, the normalized meridional structure of the

forced Kelvin wave is shown in Figure 6 which shows the Kelvin wave becomes slightly

more trapped off the equator which is negligible. Also the meridional velocity of the

forced Kelvin wave is shown as an anti-symmetric function which is like the case for

the symmetric equatorial waves.

• Gravity waves

The westward Gravity waves are highly affected by both shears and their trapping is

much weaker compare to the their free counterparts. The effect is more considerable

in the easterly background, EE. Moreover, the meridional structures of u, v and θ are

different compared to the results in Zhang and Webster (1989) especially for u and θ.

However, in presence of EW and EE the eastward Gravity waves are generally more

trapped except for the zonal velocity in EE which becomes less trapped and deformed

compared to their free cases.

• Mixed Rossby Gravity wave

As we discussed, the westward MRG becomes unstable in EW. However, as in Figure 8
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the EE effect is negligible. In contrast, Zhang and Webster obtain stable MRG waves

where the shear weaken the trapping of the waves around the equator.

Like in Zhang and Webster, the meridional structures of u and θ for the eastward

gravity N = 0 are not affected in a shear environment but v is more trapped, Figure

8.

• Rossby waves

Unlike the belief that Rossby waves modify the tropical-extra tropical energy transport

by being less trapped, here we show that the forced Rossby waves with N = 1 in EE

are more trapped. Note that the Rossby waves N = 1 become unstable in presence

of EW. These results are different than the results in previous studies Zhang-Webster

(1989).

3) Unstable equatorial waves

Here, we characterize the unstable forced waves obtained by the linear analysis in the

background westerly shear. Since the frequencies of the unstable waves are conjugates, one

wave grows and the other vanishes in time while they both propagate with a same phase

speed. For the symmetric waves, the Rossby waves with M = 1 and 3 are unstable and

for the anti-symmetric waves, the westward Yannai wave and Rossby wave M = 2 become

unstable.

To justify this, we compare the of meridional structure of obtained stable forced waves

with their free counterparts. In Figure 11, we compare the symmetric free Rossby waves

with M = 1, 3, 5, and 7 with the stable symmetric forced waves. The structure of these
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stable waves resemble with Rossby wave of M = 5 and 7 while they become more trapped.

This implies that the unstable waves for symmetric waves are Rossby wave M = 1 and 3.

Similarly, in Figure 12, we show the meridional structure of the free westward Yannai wave

and Rossby waves M = 2, 4 an 6 on left panel and the two stable forced waves on right

panel. This suggest that the Yannai wave and Rossby wave M = 2 are the unstable waves

in westerly shear.

5. Evolution in time

In order to capture the nonlinear interactions between the barotropic mode and the first

baroclinic mode, we evolve (26) in time by using the second order central scheme of Nessyahu

and Tadmor (1990) for a non-homogeneous conservation law. Since A is a constant matrix

we rewrite system (26) as a conservation law

∂W̃

∂t
+

∂

∂x
(AW̃ ) = −(B + C)W̃ . (43)

The class of the high resolution central schemes of Nessyahu and Tadmor (1990) is an

extension of Lax-Friedrichs scheme (LxF) which uses a high order polynomials rather than

piecewise constant function at each time step to achieve high order convergence in smooth

regions. The second order central scheme on the non-staggered grids is explained briefly

below.
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a. Second order central scheme

The second order central scheme on non-staggered grids for a balanced law

∂u

∂t
+

∂f

∂x
= g(u) (44)

is derived by the following steps.

• First, we construct a piecewise linear function on each grid cell xj ≤ x ≤ xj+2 by the

given data at time tn,

Lj+1(x, tn) = un
j+1 + (x − xj+1)

1

2∆x
u′

j+1 (45)

where 1
2∆xu′

j+1 is the slope.

• Second, we evolve the approximation in time by using finite-volume method on cell

[tn, tn+1] × [xj−1, xj+1] to avoid solving the Riemann problem at the cell edges.

• Third, we reconstruct the piecewise linear function for time tn+1 and continue inte-

grating.

Therefore, the approximation for u at time t +∆t is formulated by

ūj(t +∆t) =
1

2
[uj−1(t) + uj+1(t)] +

1

4
[u′

j−1 − u′
j+1] −

∆t

∆x
[f(u(xj+1, t +

∆t

2
)) − f(u(xj−1, t +

∆t

2
))] +

1

2∆x
Ig (46)

where

Ig =

∫ xj+1

xj−1

∫ tn+1

tn
g(u(x))dtdx. (47)

Ig can be approximated using any explicit or implicit quadrature formula, for more details

the reader is referred to Liotta and Romano (2000).
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b. Dynamical interactions between equatorial waves and the barotropic shear

In this section, we present the interaction between the imposed barotropic shear with the

equatorial Kelvin and Rossby waves in the case of equatorial easterlies.

• Kelvin waves

We use the second order central scheme in (46)-(47) for system (26) with a k = 4 Kelvin

wave as initial data in the EE shear background and we evolve it in time over 100

days. The interactions between the Kelvin waves and the barotorpic shear deform the

Kelvin wave and also consistent with the linear analysis they induce a weak meridional

velocity, Figure 13. We recall that, this meridional velocity produce strong convergence

and/or divergence regions. In Figure 14, the time series of relative meridional wind

(left panels) and relative meridional convergence max(vy(x, y))/ max(ux(x, y)vy(x, y))

(right panel) are plotted which shows the nine periods of the forced Kelvin wave over

the period of 100 days.

The time series of the total energy of the forced Kelvin wave and the relative con-

tribution of each component u, v and θ to the total energy are respectively shown in

(15) and (16). The time series of the total energy indicates that the forced Kelvin

wave is dissipative and the period of the Kelvin wave increases from almost 9 days

and 6 hours to 11 days and 2 hours. This means the forced Kevin wave has a smaller

frequency compared to the free case which is seen in linear analysis. Moreover, the

energy contribution of meridional velocity in average is 2 percent of the total energy

which is weak compare to u and θ.
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Interestingly, this forced Kelvin wave excite westward going waves as seen in Hovmoller

diagram of the zonal velocity for [0-25] days in Figure 17. A Hovmoller diagram is a

diagnostic tool to show the zonal propagation of waves by taking the meridionally

averaged zonal velocity and plotting contours of its time series. To identify these

waves, we apply spectral analysis in Figure 18 which shows three distinct strong peaks

for forced Kelvin wave, (k,ω) = (4, 42), (4, 103) and (-4,11). The significant excited

waves are a Rossby wave, eastward and westward Gravity waves of weaker strength but

their phase speeds and wave structures despite some quantitative differences, resemble

those of the dry waves, Figure 20. Note that the forced symmetric Kelvin wave with

k = 4 excites two other symmetric equatorial waves with the same wavenumber. The

energy contribution of each waves to the total energy is shown in Table 1 which shows

most of the total energy, 97% is from the Kelvin wave.

We show snapshots of the contours of the potential temperature and the flow for filtered

Kelvin wave in Figure 19, the eastward Gravity wave and the excited Rossby wave in

Figure 20 at t = 30 days which is the local maximum of the relative velocity and the

relative meridional convergence.

• Rossby wave

Rossby waves are subject of interest as they are believed to play a central role in

the tropical-extratropical energy exchange. Therefore, here we do the same study as

the Kelvin wave for the forced Rossby wave. First, by focusing on the Hovmoller

diagram for [0-100] days of the forced Rossby wave, Figure 21, it can be seen that

the Rossby wave excites at least two eastward waves, one fast and one slow wave.
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The power spectrum of the forced Rossby wave, Figure 22, shows the excitement of

other equatorial waves. Among those, a westward gravity wave, a kelvin wave and

interestingly an MJO like wave. The structure of these waves are presented in Figure

23. The energy contribution of these waves to the total energy is shown in Table

2 which shows that unlike the forced Kelvin wave which maintains most of its total

energy, the forced Rossby wave breaks down and looses its energy to the newly excited

waves. Note the excited Kelvin wave, possesses the same properties such as a non-zero

merdional velocity and the associated convergence/divergence regions as the forced

Kelvin wave.

The meridional structure of components of filtered Rossby wave are shown in Figure 24

which clearly shows that shear-Rossby wave interaction makes the Rossby wave more

trapped around the equator.

6. Conclusion

Here we study the interactions between equatorially trapped waves and two imposed

barotropic shears in the context of simplified model. The model consists of the linear equato-

rial shallow water equations forced by an imposed barotropic background shear, representing

the interactions between the barotropic mode and the first baroclinic mode. This barotropic-

baroclinic model is derived by applying Galerkin projection on the non-hydrostatic prim-

itive equations on the beta-plane in the vertical direction (Majda and Biello 2003). We

apply a meridional projection introduced by Khouider and Majda (2001) to approximate
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the obtained system numerically. We consider two background shears. One characterized

by equatorial easterlies and one by equatorial westerlies, mimicking the mean zonal wind at

200 mb over the western an eastern Pacific ocean, respectively (Zhang and Webster (1989)).

We look at properties of the forced equatorial waves such as their frequencies and their

trapping. We have performed a linear analysis for wave-like solutions that move along the

equator as well as direct numerical integrations to capture the dynamical evolution of the

waves in the presence of the background barotropic shear. In the sheared environment, the

frequencies of most of the eastward waves are increased while for the westward waves, they

are decreased. In addition, westward mixed Rossby-gravity (MRG) waves and some Rossby

waves become unstable in the presence of the westerly shear.

For the direct integrations, we focus on Kelvin waves and equatorial Rossby waves. We

demonstrate that the interaction of a Kelvin wave with a meridional-barotropic shear induce

a non-zero meridional wind that forms and oscillates together with the whole flow structure.

Although weak, this meridional velocity carries a significant equator-ward mass convergence

which could intensify moist convection. The strength of the meridional wind depends on

the zonal wavenumber and the strength of the shear gradient. Moreover, this shear-Kelvin

interaction weakly excites other symmetric equatorial waves such as a Rossy wave (M=1)

and an eastward gravity wave which more or less have the same properties as their free

counterparts.

The equatorial Rossby waves are believed to have important role in tropical-extra trop-

ical energy exchange by extending poleward. However, we show that their responses are

different and they become equatorially less trapped in the case of the easterly background

shear. Moreover, like the Kelvin waves, the shear-Rossby wave interaction excites other
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symmetric equatorial waves. Among which we have a westward gravity wave, a kelvin wave

and interestingly an MJO like wave with significant energy contribution.

In westerly shear case, the solution becomes unstable due to the excitation of unstable

waves that eventually grow.
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total energy at time t = 30 days.
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torial waves; in no flow (solid lines) and EE (stars) background.
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Fig. 3. Eigenfrequencies of symmetric (left panel) and anti-symmetric (right panel) equa-
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Fig. 6. Meridional structure of Kelvin wave with k = 5 in sheared zonal flow obtained by projected
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Fig. 7. Meridional structure of westward Gravity wave (left panel) and eastward Gravity wave
(right panel) for k = 5 and N = 1 in sheared zonal flow obtained by projected primitive equations;
no wind (solid lines), westerly shear (dotted lines) and easterly shear (dashed lines).
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Fig. 8. Meridional structure of westward MRG wave (left panel) and eastward Gravity wave
N = 0 (right panel) for k = 5 in sheared zonal flow obtained by projected primitive equations; no
wind (solid lines), westerly shear (dotted lines) and easterly shear (dashed lines).
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Fig. 9. Meridional structure of Rossby wave for k = 5 in sheared zonal flow obtained by projected
primitive equations; no wind (solid lines), westerly shear (dotted lines) and easterly shear (dashed
lines).
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Fig. 11. Meridional structures of free symmetric Rossby waves with M = 1, 3, 5 and 7 on the left
side and the stable forced Rossby waves by EW, the top panels are zonal velocities, u, middle ones
are meridional velocities, v, and the bottom ones are potential temperatures, θ.
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Fig. 17. Hovmoller diagram of the forced Kelvin wave with k = 4 in EE for [0-25] days.
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Fig. 18. Power spectrum in wavenumber-frequency obtained from the forced Kelvin wave k = 4
by EE.
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Fig. 19. Filtered Kelvin wave at t =30 days, contours of the potential temperature and the flow
(arrows).
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Fig. 20. Excited eastward Gravity (left panel) and excited Rossby wave at t =30 days, contours
of the potential temperature and the flow (arrows).
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Fig. 21. Hovmoller diagram of the forced Rossby wave with k = 4 in EE.
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Fig. 22. Power spectrum in wavenumber-frequency obtained from the forced Rossby wave k = 4
by EE.
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Fig. 23. Forced Rossby wave M = 1 (top-left), excited Kelvin wave (top-right) and excited
westward Gravity wave (bottom-left) and excited Rossby wave M = 3 at t =30 days, contours of
the potential temperature and the flow (arrows).
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Fig. 24. Meridional structures of free symmetric Rossby waves with M = 1and forced Rossby
waves by EE, zonal velocity (top panel), meridional velocities (middle panel) and potential tem-
peratures (bottom panel).
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