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1. Introduction

The Dines, or pressure-tube, anemometer, consists of a large-diameter pitot tube mounted on a vane,
connected to a unique manometer. This manometer consists ofan open-bottomed tapered float in a water
tank, with the pressure tube from the pitot head feeding intothe air space in the float. As the wind
speed rises, the pressure inside the float increases and the float rises, moving the recording pen. Further
information on the instrument may be found in Dines (1892) and Gold (1936). The Dines anemometer
is now obsolete in Australia, having been largely replaced by cup anemometers. Nevertheless, historical
records from the instrument are important to understandingthe wind risk climate, not least since the two
strongest gusts ever recorded on the Australian mainland, in Tropical Cyclones Tracy of 1974 and Vance
of 1999, were on Dines instruments.

The behaviour of cup anemometers in turbulence has been extensively studied, but comparatively
little similar work has been done on the Dines, and none recently. Some studies have compared cup to
Dines anemometers (e.g. Mattice 1938; Dyck 1941; Handcock 1963; Logue 1986; Smith 1981) or looked
at the Dines anemometer in isolation (e.g. Wieringa 1980; Bureau of Meteorology 1987) but these have
mostly focussed on the mean, rather than the transient, response. Here, we present and analyse a newly
developed physical model of the transient response of the Dines anemometer. Two previously observed
resonances are confirmed, and their physical mechanism described. A third low-frequency oscillation,
not previously known, is found in the model. Observations that may indicate this oscillation are briefly
discussed. In addition, it is shown that the instrument may overspeed, albeit for different reasons to cup
anemometers.

Further work, in collaboration with the Cyclone Testing Stations at James Cook University and Geo-
sciences Australia, will involve verification and calibration of the physical model by experiments on a
remnant functioning Dines instrument, and reinterpretation of the historic gust record.

2. Modelling the Float Chamber

The manometer of the Dines anemometer is illustrated in Fig.1 has a complicated geometry, designed
to produce a steady-state float displacement that is linear in the applied wind speed. This geometry com-
plicates the analysis, so for convenience a simpler geometry will be temporarily assumed. In particular,
the following simplifying assumptions are made:

1. The cross-sectional areas of the water inside and outsideof the float are equal.

2. The float and containing vessel have parallel sides.
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3. The pressure in the suction chamber is constant, or equivalently, the suction chamber is open to
the atmosphere.

4. The movement of the float and liquid experience Newtonian damping with time-scalesτ1 andτ2

respectively.

5. The relative motion of the float and liquid is Newtonian damped with time-scaleτ3, to represent
the choke at the bottom of the float (see section 2.4.

With these assumptions, the float chamber isnearly equivalent to a U-tube manometer with a frictionless
piston supported by some trapped air in one arm, and forced byvarying the amount of trapped air. Figure
1 sketches the successive approximations, from tapered float, to parallel-sided float, to U-tube. In the U-
tube, the piston represents the Dines float and the manometerliquid the water in the Dines float chamber.
The trapped air between the piston and the manometer liquid corresponds to that inside the Dines float.
It is assumed to compress isothermally, and acts as a spring between the two masses.

An important difference with the Dines manometer is that thesimplified system does not measure
pressure. In a Dines manometer, the net upwards force on the float decreases as the float rises, because
the area of the water surface in the bottom of the tapered floatdiminishes. In contrast, a parallel-sided
float will rise indefinitely given an infinite supply of internal air at a fixed pressure, provided that the
pressure is sufficient to lift the float. Hence the forcing in this system is better regarded as being the
mass of trapped air, rather than its pressure. This simplification is helpful for understanding the transient
response, but will later be removed. The mass of air in the chamber will continue to be a key variable
in the system, but this mass will be eventually governed by equations which describe the flow of air
between the anemometer head and the chamber via the tubing.

A second difference is that the flow of the liquid around the bottom of the Dines float is probably
rather complex, while the analogous flow around the bend in the U-tube is much more simply modelled.
In particular, the liquid will be assumed to move as a single mass.

The variables in the system are the positions and velocitiesof the piston and manometer liquid,
(x1, v1) and(x2, v2) respectively, and the pressurep of the trapped air. The independent variables are
the piston massm1, the tube areaA, the amount of trapped airc(t), the pressure of air in the suction
chamberpenv, and the mass of the liquidm2 = 2xeAρ wherexe is the resting position of the liquid if
the piston was removed andρ is its density. All distances are measured along the tube from the bottom
of the U; distances towards the piston side are positive.

The trapped air has massma, pressurepenv + p and densityρa. Combining the definition of density
ma = (x1 − x2)Aρa with the gas lawpenv + p = ρaRdT yields

c(t) ≡ RdTma(t) = (penv + p)A(x1 − x2)

whereRd is the gas constant for dry air andT is the air temperature. We will usec(t) as the principal
forcing of the system.

The forces on the float are its weightgm1, the net upwards pressure due to the trapped airpA, and
friction which we model as a linear damping to zero with time scaleτ1, and a linear damping to the liquid
motion with time scaleτ3. Newton’s second law gives

m1v̇1 = pA − gm1 − m1τ1v1 − m1

τ3

2
(v1 − v2) .

The liquid motion is forced by the air pressure differencep between the chamber and outside, and
by the hydrostatic pressure difference2(xe − x2)ρg due to the different liquid levels inside and outside
of the float. A linear damping is again included. It is assumedthat the water moves essentially as a solid
mass, hence

2xeAρv̇2 = −pA + 2(xe − x2)Aρg − 2xeAρτ2v2 − 2xeAρ
τ3

2
(v2 − v1) .
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Figure 1: The Dines anemometer float chamber and successive approximations. The left panel shows the classic
Dines manometer, with the float of tapered cross-section designed to produce a displacement that is linear in wind
speed. The central tube feeds the pressure at the pitot tube entry into the interior of the float. Blue shading
represents water. The middle panel approximates the float ashaving parallel sides. The right panel has similar
topology to the other panels, but approximates the liquid asmoving as a single mass in a U-tube. The float is
represented as a piston in one arm of the tube, supported above the liquid by the trapped air. The notation is that
x1 represents the position of the piston,x2 the position of the liquid top in the piston arm, andxe the equilibrium
position that the liquid would take if the piston was removed. Distances are measured from the bottom of the
U-tube, with the piston arm being positive. The left and centre drawings are from Gold (1936).

where2xeAρ is the mass of the liquid. This last assumption is not unduly restrictive – if the channel
through which the water moves is not of constant cross-section, then the greater mass per unit length in
the wider sections will be exactly compensated by the lower acceleration experienced by water therein –
it is the inertia that matters.

In summary, the equations governing the system are

x1 − x2 =
c(t)

A(p + penv)
(1)

ẋ1 = v1 (2)

v̇1 =
pA

m1

− g − τ1v1 −
τ3

2
(v1 − v2) (3)

ẋ2 = v2 (4)

v̇2 =
−pA + 2(xe − x2)Aρg

2xeAρ
− τ2v2 −

τ3

2
(v2 − v1) (5)

Equation (1) is Boyle’s law and (3) and (5) are Newton’s second law. Equation (1) is used to eliminate
pA from the remaining equations, leaving a set of four nonlinear coupled differential equations. Linear
analytic solutions and numerical solutions (by fourth-order Runge-Kutta integration) will be obtained.

The equilibrium state of the system is found by solvingv̇1 = v̇2 = 0 with c = c0 constant, giving

x2e = xe −
m1

2Aρ
(6)

x1e = x2e +
c0

gm1

(7)

Note that the equilibrium water level (6) is independent ofc0, as in a real Dines anemometer (Gold 1936).
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Thecalibration of the system, practically speaking, is the readingsx1 andx2 that it would produce
in response to steady forcingc0, provided that sufficient time had elapsed for it to reach equilibrium
v1 = v2 = 0. In the absence of damping, total energy is conserved and so this state will never be met,
but in reality, the anemometer will tend to this state. It is convenient to be able to discuss the calibration
with respect to nonsteady forcing. Hence (6) and (7), the calibration equations of the system, will also be
applied to nonsteady forcingc(t), so as to compare the instantaneous readings of the instrument to that it
would give in a steady state with that instantaneous forcingheld constant. In particular, this interpretation
is necessary for the analysis of “overshooting” and “undershooting” of gust measurements in unsteady
flow.

The energy within the system for steadyc = c0 is given by

EK =
1

2
m1v

2

1 + xeAρv2

2 (8)

EP,1 = m1(x1 − x1e)g (9)

EP,2 = Aρg
[

(x2 − xe)
2 − (x2e − xe)

2
]

(10)

EP,p = c0 log

(

x1 − x2

x1e − x2e

)

+ penvA[(x1 − x2) − (x1e − x2e)] (11)

representing respectively the kinetic energyEK , the potential energies due to the positions of the piston
EP,1 and liquidEP,2, and the potential energy due to the pressure of the trapped air EP,p. These potential
energies are relative to the equilibrium states. The accuracy of the numerical solutions was checked by
requiring them to conserve total energy to high accuracy in simulations with dampingτ1 = τ2 = τ3 = 0.

2.1 Undamped behaviour

Some limiting, small-amplitude undamped cases for steady forcing,c = c0, are of interest. The first
three are not very useful in understanding the numerical solutions, but the fourth will be seen to be of
significant importance. For simplicity we takepenv = 0 here; this simplification is relaxed in section 2.3.

1. Liquid stationary. Then writex1 = x2 + c0/(gm1)+ ε, where the constantc0/(gm1) is motivated
by (7). Equations (2) and (3) withτ1 = τ2 = τ3 = 0 give

ε̈ = g

(

1 +
gm1

c0

ε

)

−1

− g (12)

≈ −
g2m1

c0

ε (13)

which describes a simple harmonic oscillator with frequency

f1 = g

√

m1

c0

. (14)

This limit will also describe the motion of the piston relative to the liquid when the liquid is moving
relatively slowly, or when the liquid is much more massive than the float. Physically, it is a mode
in which the piston “bounces” on the trapped air.

2. Piston mass negligible. Equations (4) and (5) become

ẍ2 = −
g

xe
x2 + g (15)

which in which the liquid oscillates with frequency

f2 =

√

g

xe
(16)
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about mean positionxe. This is a gravitational mode.

3. Piston and liquid move together That is,v1 = v2, which is the same as the previous case, except
that the oscillating mass has increased bym1. The frequency is

f3 =

(

2Aρg

2xeAρ + m1

)1/2

. (17)

This is also a gravitational mode.

4. Coupled oscillations. Consider oscillations of the form

x1(t) = x1e + δbeiωt (18)

x2(t) = x2e + δeiωt (19)

wherei2 = −1. That is, the piston and liquid are oscillating with the samefrequencyω, andb
describes the relative amplitude and phase of the oscillations. Substituting these equations into the
governing equations (1) to (5), expanding as a Taylor seriesin δ and taking the first-order terms
yields

bc0m1ω
2 + (1 − b)(gm1)

2 = 0 (20)

2Ac0ρ(xeω
2 − g) − (1 − b)(gm1)

2 = 0 (21)

with solutions

ω2

1 =

g2

(

m2
1
+ 2Am1ρxe + 2Ac0ρ/g −

√

8Aρxem3
1
+

(

m2
1
− 2Aρxem1 + 2Ac0ρ/g

)2

)

4Ac0ρxe

(22)

b1 =

(

m2

1
− 2Aρxem1 + 2Ac0ρ/g +

√

8Aρxem3
1
+

(

m2
1
− 2Aρxem1 + 2Ac0ρ/g

)2

)

2m2
1

(23)

and

ω2

2 =

g2

(

m2
1
+ 2Am1ρxe + 2Ac0ρ/g +

√

8Aρxem3
1
+

(

m2
1
− 2Aρxem1 + 2Ac0ρ/g

)2

)

4Ac0ρxe

(24)

b2 =

(

m2

1
− 2Aρxem1 + 2Ac0ρ/g −

√

8Aρxem3
1
+

(

m2
1
− 2Aρxem1 + 2Ac0ρ/g

)2

)

2m2
1

. (25)

The argument to the square root is always positive, sob1 andb2 are always real. Clearlyb1 > 0 >
b2, so solution(b1, ω1) has the the piston and liquid in phase, and(b2, ω2) has them in opposite
phase. The argument to the square root can also be written

(

m2

1 + 2Am1ρxe + 2Ac0ρ/g
)2

− (16A2c0m1ρ
2xe)/g

from which it follows thatω1 andω2 are always real, with0 < ω1 < ω2. The low frequency
oscillation has the liquid and piston in phase, and the high frequency one in opposite phase.
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Figure 2: Time series of simulated Dines
manometer. The upper panel shows the
float (blue) and liquid (green) position, and
the lower panel shows the respective veloc-
ities. The lighter lines in the upper panel
show the equilibrium positions of the float
and liquidx1e andx2e, and the black line
shows the mean position of the float (cal-
culated over a much longer period than that
shown here). Parameters areA = 1, c0 =
0.9, g = 1, m1 = 1, ρ = 1, τ1 = τ2 =
τ3 = 0, xe = 2. The initial condition
wasx1 = x1e + c0/(gm1), x2 = x2e and
v1 = v2 = 0.
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Figure 3: Power spectra ofx1 (blue curve)
andx2 (green curve) from the simulation in
Fig. 2. The diamonds indicate the frequen-
cies for the coupled oscillation,ω1 (ma-
genta) andω2 (red).

A time-series plot of simulated motion for the full equations is shown in Fig. 2. This example
clearly shows periods where the liquid and piston oscillatein phase (e.g. 690 – 770), and periods where
they are out-of-phase. Apparently both oscillations are present and beating is occurring, but see further
discussion of this case later. The mean position of the float (black line) is significantly displaced from
its equilibrium positionx1e (lighter blue line). In the usual anemometer parlance, the instrument is
overspeeding; that is, the measured mean wind speed has a positive bias. In contrast, the mean liquid
position is indistinguishable fromx2e (light green line).

The power spectra ofx1 andx2 for this simulation are shown in Fig. 3, with the coupled frequen-
cies ω1, ω2 indicated by the filled diamonds. The spectrum is dominated by a broad peaks around
ω1 ≈ 0.6037, ω2 ≈ 1.2347, and the harmonics thereof. The nonlinearity is evident from the rela-
tively large amplitudes of the harmonics, and from the broadness of the peaks. The broad peaks are
also notably spiky; in this example the spikes are spaced at about0.04, but when run at lower amplitude
they become fewer and are spaced at0.027 ≈ ω2 − 2ω1, suggesting that the spikes are the result of
nonlinear interactions between the frequenciesω1 andω2. Reducing the amplitude of the oscillations
by changing the initial condition leads to narrower spectral peaks and fewer spikes, confirming the role
of nonlinearity. There is significant power in the motion of the piston, but not the liquid, at frequencies

6



700 750 800 850 900
0

2

4

6

time

x 1, x
2

A=1.0 c
0
=2.0 p

e
=0 τ

1
=0.00 τ

2
=0.00 g=1.0 m

1
=1.0 ρ

w
=1.0 x

e
=2.0

700 750 800 850 900
−2

−1

0

1

2

time

v 1, v
2

Figure 4: As for Fig. 2, but withc0 = 2.
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Figure 5: As for Fig. 3, but withc0 = 2.

below 0.3, while the power is more similar for other peaks in the spectrum. The high piston energy and
partial decoupling of float and liquid at low frequencies areless apparent when the overall amplitudes
are reduced, again implying that nonlinearity may be the cause. This behaviour will be further discussed
below.

Limiting behaviour at very high wind speeds, (i.e. the limitc0 → ∞), is thatω2
1
→ 0, b1/c0 →

2Aρ/(gm2
1
), ω2

2
→ g/xe andb2/c0 → 0. The in-phase oscillation becomes slow and predominantly in

the piston, while the opposite-phase essentially becomes independent of the piston and similar to thef2

case above.
If c0 is increased from that shown in Fig. 2, then the character of the motion changes. Time-series

and spectra forc0 = 2 are shown in Figs 4 and 5. The motion is approximately periodic with the section
shown apparently beginning to repeat at aboutt = 830. The spectrum has many more peaks, but the
linear analysis describes the strongest two. The offset of the mean float position fromx1e persists.

Further indication of the complexity is provided by Fig. 6, which shows the power spectra for a
range ofc0. It is clear that the linear analysis successfully picks outthe dominant peaksω1 andω2 (white
dotted curves), with their difference being the third prominent peak (black dotted curve). A rich range
of harmonics and interharmonics are also apparent. The highpower at low frequencies seen in Fig. 3
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Figure 6: Logarithm base 10 of the power
spectral density forx1 (top) andx2 (bot-
tom) for values ofc from 0.02 to 4 by
0.02. Other parameters areA = 1, g = 1,
m1 = 1, ρ = 1 andxe = 2. The dotted
white curves areω1 (lower) andω2 (upper),
and the dotted black curve isω2 − ω1.
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Figure 7: Upper panel: The extent to
which the time-mean ofx1 (blue) and
x2 exceed their equilibrium values, in the
same simulations as for Fig. 6. That is,
x1−x1e (blue) andx2−x2e (green). Lower
panel: The power at DC (i.e.f = 0) in
these simulations.
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Figure 8: As in Fig. 2, except for a longer
period. The thick lighter blue curve shows
the low-pass filtered piston positions. The
similar green curve is indistinguishable
from the water mean position.
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Figure 9: Wavelet power spectrum of the
simulation shown in Fig. 2. The upper
panel shows the piston motion, and the
lower that of the water. The horizontal
white lines indicateλ = 2π/ω1 andλ =
2π/ω2. Note also the much lower fre-
quency oscillation present nearλ = 150.

is apparent in the upper panel nearc0 = 0.9, f = 0, from which it seems that its origin is a prominent
interharmonic that happened to intersectf = 0 at thatc0. This intersection occurred becauseω2 ≈ 2ω1

around thatc0 (as already noted), a relationship that will presumably tend to favour relatively strong
coupling between the two oscillations. The closely-spacedspikes in the spectrum seen in Fig. 3 are also
apparent. Other interesting features include the regular variation in the width of the peak aboutω1 and
to a lesser extentω2 and the remaining lines. Similar variation is also apparentat zero frequency, and is
shown more clearly in the lower panel of Fig. 7. The upper panel of that figure shows the overspeeding
previously noted in Figs. 2 and 4. Relationships between thetwo panels are obvious, as is the systematic
nature of the overspeeding. Reducing the amplitude of the initial departure from equilibrium by a factor
of 10 reduces the overspeeding by about a factor of60, suggesting that determining the cause of the
overspeed will require an analysis of the nonlinearity in the system.

We return now to the case withc0 = 0.9 and consider the cause of the overspeeding. Figure 8 shows
a longer version of Fig. 2, which includes also a low-pass filtered float position. This curve is a maximum
when the water and piston are most obviously out-of-phase, and a minimum when they are in-phase. The
trapped air acts as a nonlinear spring – the force required for a given incremental displacement is larger
when the air is already compressed from its equilibrium position, than when it is rarefied. Thus, as the
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Figure 10: Time series of manometer re-
sponse for sinusoidally-varying oscillation
at frequencyf = ω2. Upper panel, piston
(blue) and water (green) positions. Dark
curves show the instantaneous positions,
and the lighter curves the calibrated values
x1e andx2e calculated fromc(t). Lower
panel, piston and water velocity. Parame-
ters areA = 1, c0 = 2, τ1 = 1, τ2 = τ3 =
0, g = 1, m1 = 1, ρ = 1, xe = 1, giv-
ing ω1 = 1.18, ω2 = 0.60, b1 = −0.56
andb2 = 3.56. The forcing amplitude is
G = 0.1.

amplitude of the out-of-phase oscillation increases, the piston will experience a nonlinear increase in the
upwards force it experiences at the bottom of its cycle, whenthe water rises to meet it. It appears that
this is sufficient to increase its mean position over that that would occur with a smaller-amplitude, more
linear, oscillation.

Figure 9 shows the wavelet power spectrum for the piston and water from this simulation. The
amplitudes of the two coupled modes are not constant, but cycle slowly with time. Evidently energy
is being transferred back and forwards between them. This transfer is accompanied by a much slower
oscillation in the piston, but not in the water. The amplitude of this latter oscillation depends on the
overall amplitudes in the system, so it is clearly nonlinearin nature. I can recall seeing in the past Dines
anemometer traces with an oscillation with a period of several minutes, attributed to gravity waves. Is it
possible that this phenomenon is instead a manifestation ofthis nonlinear effect within the instrument?

2.2 The effects of damping the float

A real Dines float has damping due to the viscosity of the water, the shaft from the float protruding
through the bushing at the top of the float chamber, from the pen mechanism, and from remote read-outs.
Thus such motions will be likely to be damped. On the other hand, the forcingc(t) will vary due to
turbulence, not be constant as in section 2.1. The behaviourwhen the dampingτ1 6= 0 andc varies in
time is now explored. To begin with,c will oscillate sinusoidally,

c(t) = c0[1 + G sin(ft)] (26)

wherec0 is related to the mean wind speed,G is essentially a gust factor, andf is the forcing frequency.
The main diagnostic will be to compare the actual oscillation of the piston and water with that expected
from the calibration equations, namely the equilibrium values expected for steady forcing. In these
simulations, quite heavy dampingτ1 = 1 is applied.

Interesting cases are likely to include those wheref is close to one of the dominant frequencies
apparent in Fig. 6, perhaps most strongly the opposite-phase oscillationf = ω2 but note that both
coupled linear modes will be directly forced by oscillations in c. A sample time-series for this case is
shown in Fig. 10. The water and piston are oscillating roughly in opposite phase, with relative amplitude
0.47, not too far from|b2| = 0.56 for these settings. The amplitude of the piston oscillationis about
7% greater than that expected from the calibration, even with this relatively heavy damping. Evidently
resonance is present at this frequency, as expected. More interestingly, the mean piston position is
clearly offset slightly above its calibrated value, as alsofound in some undamped cases. As before,
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quency. The lengths of the dumb-bells at
ω1 andω2 indicate the ratiosb1 andb2.
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c0 = 1, giving ω1 = 1.41, ω2 = 0.71,
b1 = −1 and b2 = 2. The forcing fre-
quency isf = 2.6, roughly twiceω2 and
the amplitude is increased toG = 0.5.

the instrument is overspeeding. Examination of the spectrum (Fig. 11) shows the now familiar peak at
low frequency. An appealing explanation for the overspeeding is that nonlinearities are generating this
peak (and many others), but that the Newtonian damping is unable to remove very low frequency (and
in particular, DC) motions. However, this explanation cannot be complete because overspeeding occurs
also in the undamped simulations.

More exotic behaviour is possible, in particular in the interesting case wherec0 satisfiesω2 ≈ 2ω1.
Figure 12 shows such a case forced at a little less than twiceω2. The amplitude was increased toG =
0.5 to really let the nonlinearities rip. The system resonates at f/2, half the forcing frequency, and
overspeeds by about35%.

The behaviour is summarised in Fig. 13. The energy (panel a) clearly depicts the resonant peak,
with the overspeeding of the mean shown in panel (b). Note from panel (c) that the gusts are measured
accurately at low frequencies, then tail off rapidly beforebeing overestimated at resonance, then tailing
off again. From panel (d), the piston and water oscillationsdiffer in phase by∼ π/3 at low frequency,
and aboutπ at high, with the dividing frequency being that at which the piston ignores the forcing.
Increasing the amplitude of the forcing (Fig. 14) increasesthe amplitude of the response and introduces
the second resonant peak already seen in Fig. 12, but does notproduce much else in the way of change.
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Figure 13: A summary of the behaviour
for the forced damped system. Each panel
shows the system behaviour as a function
of forcing frequencyf , with the natural fre-
quenciesω1 andω2 indicated by magenta
diamonds. Paremeters are shown at top left.
(a): the time-mean total energy in the sys-
tem,EK + EP,1 + EP,2 + EP,p. (b): the
mean piston and water position, relative to
that expected for steady forcingc0. (c):
the amplitude of the piston and water oscil-
lations, normalised by the expected piston
amplitude from the calibration equations.
(d): the phase difference between the forc-
ing and the response. (e): the phase of the
first harmonic of the response.
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Figure 14: As for Fig. 13, except withG =
0.5.
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2.3 Accounting for pressure in the outer chamber

Including a constant nonzero pressurepenv in the outer chamber increases the complexity of the
algebra but does not require any change in the method of solution. The equilibrium water position is
unchanged, while the float position becomes

x1e = x2e +
c0

gm1 + Apenv
. (27)

For comparison with the earlier simulations, we define

∆0 = c0

(

1 +
Apenv

gm1

)

−1

(28)

which is the length that the trapped air would assume ifpenv = 0. That is, we work in terms of the length
or volume of trapped air, rather than its mass. Searching forcoupled oscillations following the procedure
in section 2.1 reveals that

bc0ω
2m1 + (1 − b)(gm1 + Apenv)

2 = 0 (29)

and

2Ac0ρ(xeω
2 − g) − (1 − b)(gm1 + Apenv)

2 = 0 (30)

with solutions

ω2

1 =
S + 4Aρxe(gm1 + Apenv)

2 −
√

S2 + 8Am1ρxe(gm1 + Apenv)4

4Ac0m1ρxe
(31)

b1 =
S +

√

S2 + 8Am1ρxe(gm1 + Apenv)4

2m1(gm1 + Apenv)2
(32)

and

ω2

2 =
S + 4Aρxe(gm1 + Apenv)

2 +
√

S2 + 8Am1ρxe(gm1 + Apenv)4

4Ac0m1ρxe
(33)

b2 =
S −

√

S2 + 8Am1ρxe(gm1 + Apenv)4

2m1(gm1 + Apenv)2
(34)

where

S = (gm1 + Apenv)
2(m1 − 2Aρxe) + 2Agm1ρc0 (35)

It follows from

[S + 4Aρxe(gm1 + Apenv)
2]2 − [S2 + 8Am1ρxe(gm1 + Apenv)

4]

= 16A2c0gm1(gm1 + Apenv)
2ρ2xe

> 0

(36)

thatω2
1

> 0, soω1 is real.
Physically, the effect of includingpenv is to increase the stiffness of the spring. Previously, if the

volume of the trapped air halved, thenp doubled. Now,p becomes2(penv + p)− penv = penv + 2p. For
penv � p, as will usually be the case, this makes a big difference to the restoring force. The main effect
will be to shift the oscillations to higher frequency.
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Figure 15: Photograph of the lower end
of a Dines anemometer float, showing the
choke. The pressure tube enters up the hole
in the middle, almost filling it.
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Figure 16: As for Fig. 13, except with set-
tings as shown in the upper left. In partic-
ular, the absolute motions of the piston and
water are weakly damped, while the rela-
tive motion is more strongly damped.
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Figure 17: The relative amplitude (top)
and phase (bottom) of the float movement,
as a function of forcing frequency, for a va-
riety of tubing lengths. Reproduced from
Borges (1968, Fig. 5).
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2.4 Damping the relative motion

In a real Dines anemometer, the bottom of the float is not open,but contains a constriction, shown in
Fig. 15. For convenience, we call this constriction the Dines choke. We have not been able to discover
any literature on this feature, and so the reasons for its inclusion in the design are unclear. However,
it will clearly have a damping effect on the relative motionsof the float and the liquid, and was the
motivation for the inclusion of the damping with time-scaleτ3 in Eqs. (3) and (5).

Figure 16 presents plots summarising the response of the model to sinusoidal forcing of various fre-
quencies, withτ3 6= 0. It is clear that the out-of-phase resonance is weaker than the in-phase, with these
settings, as is physically reasonable. Borges (1968) conducted laboratory experiments with a pressure-
tube anemometer float chamber, in which sinusoidal pressureforcing was applied. He presented a graph
showing the amplitude and phase of the float response, reproduced here as Fig. 17. Clearly, this figure is
in good agreement with panels b and d of Fig. 16. Note that Borges (1968) presented results for several
different mean wind speeds. Variation in the mean wind speedchanges the mean mass of trapped air
c0, and hence the resonant frequenciesω1 andω2. The results of Borges suggest that the magnitude
of the out-of-phase resonance is wind-speed dependent, consistent with this sensitivity toc0, but full
investigation of this phenomenon in the model awaits further investigation.

3. Discussion

A simplified model of the Dines anemometer has been developed. Solution of the linearised equations
reveal two fundamental frequencies, corresponding to oscillations in which the water and float are either
exactly in or exactly out of phase. The former oscillation has the lower frequency. Numerical solutions
reveal that the linear solution well captures the dominant frequencies, and that the numerical solutions
contain additionally a rich array of harmonics and interharmonics of the linear frequencies. Nonlinearity
in the out-of-phase oscillation leads to a positive bias in the mean measurement (overspeeding), the
magnitude of which depends on the amplitude of the oscillation. Under certain circumstances, a third
oscillation, of much lower frequency, can occur and is related to a regular transfer of energy between the
in-phase and out-of-phase oscillations.

Numerical solutions of the forced damped equations reveal that resonances can occur at one or both
of the linear frequencies, depending on the precise circumstances. The amplitude of these resonances
can be greater than that suggested through the calibration equations by the amplitude of the forcing. That
is, the magnitude of gusts at these resonant frequencies maybe overestimated. The model is capable,
with some tuning of the unknown parameters, of at least qualitatively reproducing the results of previous
laboratory investigations that reported these resonances.

In this context, it is interesting to note the analysis of gust frequency at Australian observing sites by
Cechet and Sanabria (2010). They studied sites with long records both pre- and post- the period during
which the Australian Bureau of Meteorology was replacing Dines anemographs with cup anemometers
at such sites. Cechet and Sanabria (2010) show that strong gusts were much more prevalent in the Dines
anemometer era than in the cup anemometer era. The resonances in the Dines float chamber, identified
here, seems to be a likely explanation for the greater measured gustiness in the Dines era.

This is a preliminary report of work in progress. Colleaguesat the Cyclone Testing Station at James
Cook University are currently undertaking laboratory and field measurements on some remaining Dines
anemometers owned by the Bureau of Meteorology. These measurements will be used to calibrate an
improved version of the model described herein. The main improvement planned is to remove the sim-
plifications to the float geometry. The final, calibrated, anemometer model will be coupled to a model
that produces synthetic turbulent wind time series, to allow further investigation of the record gusts in
Tropical Cyclones Tracy, Vance, and possibly others.

Several earlier studies (e.g. Sanuki 1952) have noted resonance in the system, without analysing the
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float dynamics as here. Some of these studies note that the resonant frequency depends on the length
and diameter of the tubing from the pitot-tube head (e.g. Goldie 1935; Borges 1968). The explanation
for this phenomenon has been though to be some form of resonance in the tubing, but another possibility
is that variations in the tubing correspond to variations inthe mass of the trapped air, which would
change the resonant frequencies by changing the effective spring constant. It is hoped that the laboratory
measurements, in conjunction with the improved model, willanswer this question.

Finally, it is hoped that the model will reach a degree of verisimilitude such that it can be used to
determine whether or not the record gust measurements in Severe Tropical Cyclones Tracy and Vance
were affected by resonances in the float system. Answering this question is critical to making informed
use of these measurements for purposes including risk assessment and engineering design.
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