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1. Introduction

Improvements have been made over the past three decades in our ability to forecast the track of
tropical cyclones (TCs) (Franklin et al. 2009), which is primarily determined by synoptic-scale
environmental flow (Wu and Emanuel 1993; Wu and Kurihara 1996; Wang et al 1998). Despite this
progress, our ability to accurately predict intensity change remains quite limited (Elsberry et al. 2007;
Houze et al. 2007). The inner-core region of a TC is governed by a multi-scale array of dynamic and
thermodynamic processes in an air-sea coupled environment. Operational intensity prediction can be
substantially improved by adopting high-resolution convective scale models, and advanced vortex
initialization through a more refined use of dropsondes and remotely sensed observations (Leidner et al.
2003; Burpee et al. 1996). Despite such optimism, it is apparent that our inability to initialize a TC with
dynamically consistent structure and intensity remains a limiting factor for short to medium-range
operational storm prediction. More specifically, small-scale errors associated with moist convection often
propagate into large-scale model errors in time (Hendricks et al. 2004; Krishnamurti et al. 2005;
Montgomery et al. 2006; Zhang and Sippel 2009). This issue stresses the importance of optimal state
estimation, also known as data assimilation; where observations, a previous model forecast (background)
and their respectable errors are used to estimate a model state prior to integration that contains the least
amount of error.

Data assimilation is performed via a variational method in which a cost function measuring the
distance between a prior forecast and observations is minimized to find the analysis state, or by a secondary
approach in which an innovation or correction is added to the background state vector after assigned an
optimal weight in a least squares approach (Talagrand 1997). The process of state estimation requires
knowledge of both observational and forecast error statistics in terms of variance and covariance.
Covariance not only provides an estimate of forecast uncertainty, but also quantifies linear relationships
within the model state, allowing information to be shared between like and unlike variables. In essence,
forecast error covariance determines the extent to which a measured variable can correct state variables in
model space. Rather than using stationary, isotropic background error covariance, as is the case for
variational data assimilation systems, a least squares approach called the Ensemble Kalman filter (EnKF)
takes into account flow-dependent covariance, estimated from an ensemble of short-range forecasts.

Model initialization using an EnKF has gained much ground in regional and mesoscale prediction
in recent years (e.g. Snyder and Zhang 2003; Zhang et al. 2004; Dowell et al. 2004; Tong and Xue 2005;
Zhang et al. 2006; Torn et al. 2006; Meng and Zhang 2007; Fujita et al. 2007; Meng and Zhang 2008a,b),
and has proven successful on several TC case studies without the use of vortex bogussing (Chen and
Snyder 2007; Torn and Hakim 2009; Zhang et al. 2009). In particular, recent case studies in which the
EnKF was used to assimilate Doppler radar radial velocity observations into the Weather Research and
Forecasting model (WRF) demonstrated promising results (Zhang et al. 2009).

Bearing in mind the importance of non-static, flow-dependent forecast error for dynamically
consistent TC initialization; this research is dedicated entirely to the study of state variable covariance in
the inner-core region of a mature hurricane. Coherent correlation structures that arise from TC forecast
error growth were examined using an ensemble of forecasts from the Weather Research and Forecasting
model (WRF) for Hurricane Katrina as it intensified from a tropical storm to a category 4 hurricane. For
comparison, correlations were also calculated from the axisymmetric hurricane model developed in
Rotunno and Emanuel 1987. An ensemble intensity comparison for the two models is provided in figures
la-b.

We explored several features of ensemble forecasts that lead to anisotropic covariance within the
inner-core region of a tropical cyclone; i.e. vortex asymmetry, tilting, size, intensity, and position error. In
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the following section, a brief description of our WRF configuration and ensemble generation are provided.
The motivation behind our choice of statics is discussed in section three. Section four provides several
examples demonstrating how the flow-dependent model dynamics evolve forecast variance and correlations
in time, and the last section serves as a summary and conclusion.
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Fig. 1 Minimum sea level pressure (a) and Maximum wind speeds (b) are shown for ARW and RES7 model ensembles.
ARW-A (blue lines) represent the maximum surface wind speed after azimuthal averaging. Values are plotted at 12-h
intervals for ARW output, and 24-h intervals for RES7. Since RES7 requires a longer spin-up time, each 24-hr RES7
forecast increment is plotted next to a 12-h ARW increment for better comparrison.

2. Forecast model and experiment descriptions

2.1 Advanced Research WRF

The Advanced Research WRF (ARW) is a fully compressible, nonhydrostatic, convective scale
model that uses an Arakawa-C grid and vertical levels that follow terrain using hydrostatic pressure
(Skamarock et al. 2005). WRF version 3.11 was used for this experiment with a course domain of 202x181
horizontal grid points at 40.5 km grid spacing, and two two-way nested domains that automatically follow
the storm using the WRF vortex following algorithm. The innermost domain (D3), where all analysis for
this experiment is performed, has 34 vertical levels and follows the vortex using a 253 x 253 horizontal grid
with a spacing of 4.5 km. See Zhang et al. 2009 for the selection of physical parameterization schemes.

An ensemble of 100 forecasts of Hurricane Katrina with a lead-time of 64 hours was produced following
several hours of EnKF assimilation of airborne radar data. Forecasts were initialized from EnKF analysis
members at 2000 UTC 25 August 2005 and ensemble error statistics were calculated every 6 hours,
beginning 0000 UTC 26 and ending 1200 UTC 28. The dynamic and thermodynamic structure of Katrina
members changed dramatically during the simulated time period, as a majority progressed from tropical
storm intensity at the time of initialization to category 4 hurricanes by the end of the forecast.

In this study, Lagrangian correlation structures, i.e. relationships between measurable variables
and state variables relative to a frame of reference following a vortex, and Eulerian correlations, calculated
with respect to a static location, are used for analyzing the ensemble error propagation throughout the
forecast. Post-processing of D3 model output was performed in the following manor:

1. Each member was repositioned based on the location of minimum sea level pressure such that
the centers of each vortex are aligned at the lowermost model level. This step removes storm



track errors and allows for simple Lagrangian reference frame calculations. Experiments in
which correlations are estimated immediately after this post-processing step are named ARW-
L.

2. Following the previous step, model output from each member was averaged azimuthally to
remove high wavenumber asymmetries in Katrina member vortices for a second experiment
called ARW-LA.

3. To perform an Eulerian reference frame analysis, members were relocated based on the 6-hr
ensemble track spread in a method that preserved the forecasted mean vortex position (Fig. 2a-
b). In doing so, the ensemble contains the same position error at all time steps, consistent with a
hypothetical 6-hr analysis cycle. This method was also used to introduce position errors in the
steady-state vortex model described in the following section. Experiments in which position
errors are rescaled via this method for the ARW ensemble are named ARW-E.

4. In the last post processing step, model output was azimuthally averaged about the location of
minimum sea level pressure (see step 2) and relocated based on 6-hr ensemble track spread (see
step 3). This results in a wavenumber zero, Eulerian reference frame case called ARW-EA.
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Fig. 2 Ensemble vortex positions (a) and rescaled positions (b) are plotted along with the mean forecasted track.
The rescaled track spread is calculated from 6-h ensemble vortex positions.

Since the region of interest in our case lies within the vicinity of the hurricane’s eye, all calculations are
performed in a subspace of D3, which will be referred to as S. The new subspace, S, has a grid size of 89 x
89 x 30 and roughly covers a 400 x 400 x 18 km® area, and restricts our investigation to the inner-core
region of the hurricane, where dynamic and thermodynamic relationships are often poorly represented by
parameterized covariance.

2.1 Rotunno-Emanuel (1987) axisymmetric hurricane model

The model described in this section (herein denoted as RE87) was used in Rotunno and Emanuel
(1987) for studying the maximum potential intensity of a tropical cyclone, given a neutral atmospheric
sounding of temperature and humidity, and a sea surface temperature. It is an adaptation of a model
originally designed by Klemp and Wilhelmson (1978) to study cumulus clouds, and further developed by
Willoughby et al. (1984) for tropic cyclone research. The RE87 equations are for compressible,
nonhydrostatic, axisymmetric flow on an f~plane, using cylindrical coordinates. The model is initialized
using a finite amplitude vortex, specified by a maximum tangential wind speed (V,,), radius of maximum
winds (R), and radius of zero wind, which develops into a steady-state vortex over time. To allow for a
horizontal and vertical depiction of the vortex, the authors interpolated RE87 output from two-dimensional
(r-z plane) spherical coordinates to a three-dimensional Cartesian domain. Random perturbations were
added to ¥V, and R to generate a 100-member ensemble of vortices, which will be used to estimate a
correlation matrix. An atmospheric sounding and mean sea surface temperature for each member were
calculated from individual ARW members at 12 UTC 28 August, thus allowing each vortex to develop in



the same environment as Katrina. Through previous experiments, the authors observed that little change
typically occurs in correlation structures for RE87 when a higher model resolution is used, a result that is
consistent with the findings of Gao and Xue 2008 and Yang and Kalnay 2008 using higher-order
atmospheric models. This justified the use of a courser, 9 km grid spacing for RE87 to speed the generation
of ensemble vortex simulations.

3. Ensemble correlations and variance

The flow-dependent nature of forecast covariance is a byproduct of the underlying error growth
dynamics, as alluded by Cohn and Parish (1991), Daley (1992), Evensen (1994), and Zhang (2005).
Besides the practical use of covariance for operational data assimilation, model forecast error calculated
from ensembles provides a wealth of dynamical information about the geophysical system at hand. When
covariance is used for this purpose, it is beneficial to dissect the statistic into the components of correlation
and variance. Correlations indicate how information is shared between like and unlike variables in both
space and time, while variance isolates the location of largest model uncertainty for a given event.

Correlation is the normalized value for covariance, and is given by:

Expl(xy = X5) Yt = Vi) _ Cov(Xy )
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where x and y represent two state variables at model grid points (i,j,k), and (/,m,n) respectively. Terms

denoted with an overbar are ensemble means and o represents sample standard deviations for variables x
and y. A cross-spatial correlation will refer to a correlation between two unlike variables, calculated with
respect to a constant correlation point [x = y, (i,],k) = (I,m,n)], as shown by the 2 x 2 matrix
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where element (2,2) is chosen as the location of interest. In terms of data assimilation, the cross-spatial
correlation matrix is used to spatially propagate information from an observed scalar quantity to model
state variables. Estimates of uncertainty for the measured and modeled variables are provided by known
observation error and the estimated forecast variance respectively, which is used to determine the optimal
weight associated with each independent estimate of the model state. Forecasters and dynamicists can also
use ensemble error pragmatically for quantifying the degree of predictability associated with a given event.

4. Results

The principal dynamical features of TCs are the secondary circulation, characterized by a shallow
layer of radial inflow near the surface and cold outflow in the upper troposphere, convergence and moist
adiabatic accent in the eyewall, and weak subsidence in the eye (Liu et al. 1999). Intense temperature
gradients, moist convection, and the warm temperature anomaly at mid levels are also defining attributes of
the inner-core region (Shea and Gray 1973). Forecast uncertainty and correlations are primarily determined
by the circulation’s response to ensemble spread in storm intensity, size, location, and degree of
organization (i.e symmetry and tilt) of individual Katrina members.

After each analysis using the EnKF, an ensemble of initial model states is made available for
generating the forecast ensemble. Our last analysis cycle occurs on 20 UTC 25 August, a time at which
Katrina strengthened to tropical storm intensity. The 20 UTC analysis ensemble contains only marginal
amounts of spread, and significant large-scale correlations between minimum sea level pressure (minSLP)
and meridional wind (v) (fig. 3ab). The initial ensemble shows a weak, but dynamically consistent mean
vortex as the pressure gradient force is largely in balance with the wind field. Variance in the v analysis,
although small, is focused primarily in the center of domain S and is most likely a result of vortex position
errors imposed on the ensemble.
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Fig. 3 Analysis cross-spatial correlations of minSLP and v are plotted with contours of maximum variance (red)
ranging from 4.6 — 18.4 m’s”, and mean v (black). Figure A is a horizontal plot for the surface level, while figure b is a
vertical cross section through the dashed line indicated on figure a.

After four hours of model integration, the 00 UTC 26 forecast ensemble statistics are shown in
figures 4ab. For a hypothetical situation in which the EnKF analysis/forecast cycles were allowed to carry
through to future time steps, covariance calculated from the resulting values would be used to correct the v
field using a measurement of minSLP. During integration, the initial variance maximum originally located
at the mean vortex center is now displaced to the eastern wall of S, near a local maximum in v (fig. 4ab).
Changes also occur in the magnitude and location of minSLP-v correlations, as they diminish slightly
between the two time steps. A smaller balance between pressure gradient and wind velocity is present
everywhere in S at 00 UTC 26, showing a shift from the largely balanced initial vortices to more
complicated structures that deviate from the largely symmetric initial wind field. Hydrostatic and
geostrophic adjustments occurring immediately after the analysis may also result from imbalances present
in the initialized model state, and present a significant influence on initial forecast error growth. It is
apparent that errors in wind velocity outweigh position errors at this forecast time, resulting in a new
variance maximum outside the vortex core region.
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Fig. 4 4-h forecast cross-spatial correlations of minSLP and v are plotted with contours of maximum variance (red)
ranging from 10.0 — 39.9 m’s™, and mean v (black). Both cross sections are through the same region described in Fig.

Consistent with findings from Zhang 2005 where ensembles were used to analyze the error growth
of a mid-latitude winter cyclone, coherent error structures begin to develop after longer ensemble lead-
times. For the remainder of this paper, initial condition imbalances will no longer be a large factor in the
succeeding error statistics, as ensemble forecasts of 12-h or more will be the topic of discussion. Given the
large ensemble track spread associated with large lead-times, the position rescaling method discussed
earlier will be used to mimic an Eulerian reference frame ensemble (ARW-E) for each time step. To
separate the effects of storm position and vortex structure errors on the variance and correlation matrices,
we will also show calculations performed for Lagrangian reference frame ensembles (ARW-L). Using both
the Eulerian and Lagrangian reference frame, members were also averaged azimuthally to determine the
wavenumber zero effects of vortex ensemble error (ARW-EA and ARW-LA).

As a tropical cyclone transitions into a mature hurricane, the primary circulation becomes stronger
and more organized, leaving the simulated vortices less sensitive to vertical wind shear and other external
forcing mechanisms. Figures 5a-h show how forecast error evolves with the underlying model dynamics



while ARW-L members increase from tropical storm to category 4 intensity. Each time step illustrates
major structural changes in the ensemble error, which become more organized and centrally localized with
time. During early time steps (Figs Sa-f), minSLP-v correlations grow from negligible (< |0.2]), loosely
organized structures to significant (< |0.6]), geostrophically consistent structures by the time Katrina
reaches category 2 intensity. By 12 UTC 28, many of the members have reached category 4 intensity,
resulting in the volume of significant correlations contracting to a region that encompasses only the inner
core (Figs 5g-h). Ensemble wind field variance also transitions into tightly organized, symmetric structures
with time, as vortex tilt and asymmetry dominates the ensemble error early on in the forecast. Hurricane
vortices become more stable and vertically symmetric, allowing errors in ensemble intensity to dominate
the contours of maximum variance, since uncertainties in forecasted wind speed dominate structural
asymmetries associated with vertical tilt at later time steps.

Fig. 5 ARW-L cross-spatial correlations of minSLP and v are plotted with contours of maximum variance (red), and
mean v (black) for 12 UTC 26 (a & b), 00 UTC 27 (c & d), 12 UTC 27 (e & f), and 12 UTC 28 (g & h). Cross sections
are through the same region described in Fig. 3.

When 6-h position errors are imposed on the forecast ensemble at 00 UTC 27 (same time step as
Figs 5b-c) in the ARW-E experiment (Figs. 6a-b), little change in minSLP-v correlations occur due to
minSLP being a Galilean invariant quantity. On the other hand, position error causes contours of maximum



variance to be concentrated closer to the origin and surface layers of the ensemble as vortex track spread
introduces forecast errors that overwhelm wind field uncertainty introduced by vortex tilting.
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Fig. 6 Same as Figs. 5c-d, but for ARW-E.

For cases where the observed variable depends on storm position, correlations are no longer
insensitive to position error. Figures 7a-d show a hypothetical situation in which a measured surface
tangential wind speed (V) can be used to correct the temperature field during an EnKF analysis. In this
case, Vg at a surface point located 27 km from the vortex origin is correlated cross-spatially with
perturbation temperature (7) at 12 UTC 28. ARW-L ensemble correlations are largely symmetric at this
time step, where a strong, thermally indirect secondary circulation persists. The correlation point is chosen
at a location near the radius of maximum winds (RMW), thus ensemble intensity spread is the primary
cause of the resulting error structures. Members with strong surface wind speeds near the RMW coincide
with stronger low-level horizontal convergence and moist adiabatic ascent in the eyewall, with forced
subsidence and warming in the core; therefore, a column of positive correlations exists inside the hurricane
eye, extending from the surface to uppermost levels of S. Error structures that emerge from the ARW-E
members at 12 UTC 28 are strikingly different those calculated from ARW-L, as vortex position spread
introduces a positive-negative correlation dipole, centered over the measurement location (Figs. 6¢c-d).
These results are consistent with the findings of Chen and Snyder (2007), where non-Gaussian position
displacements introduce analysis increment dipoles when forecasted position error is comparable to the
vortex size.




Fig. 7 Cross-spatial correlations with respect to surface V,yand the T field for a location marked by ‘c’ are plotted with
contours of mean T (black) at 12 UTC 28 for ARW-L (a & b), ARW-E (¢ & d), and ARW-EA (e & f). Cross sections are
through the same region described in Fig. 3.

The resulting dipole correlations have a large dependence on the shape of the ensemble position
distribution, since the dipole is oriented diagonally northwest to southeast at the surface, as well as the
wavenumber zero structure at large storm intensity, shown in figure 7e-f. This result begs the question of
whether or not a simplified, axisymmetric model can reproduce a similar error structure. To investigate the
matter, the axisymmetric RE87 model was adopted as a simple and straightforward alternative to the
wavenumber zero case shown in figure 7fe-f. Figure 8 shows the evolution of Vg - T cross-spatial
correlations for a surface point located 36 km from the vortex center. The correlation point was chosen at a
larger radius for this example, since weaker vortices at early time steps coincide with greater RMW. 1t is
clear that RE87 fails to resolve the same signal at 12 UTC 26, where the ensemble hasn’t yet reached
hurricane intensity, but as the ARW-E ensemble progresses forward in time, the two models converge
toward similar structures. By 00 UTC 28, errors introduced by vortex tilt and small-scale features are
negligible in comparison to position error, resulting in ARW-E correlations that are structurally upright and
extend to the uppermost layers of domain S. With the exception of magnitude differences, the regional
peaks in positive and negative correlations are similar for the two models when vertical sheer is no longer a
significant factor governing the flow-dependent error dynamics.
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5. Summary and Conclusion

In an effort to improve our current understanding of ensemble forecast error, correlation and
variance structures were analyzed from a 100-member ARW ensemble of Hurricane Katrina during a 64-h
period in which forecasts progressed from tropical storm to category 4 hurricane intensity. The observed
error statistics were shown to be dependent on initial condition imbalances, storm structure, intensity and
position. As simulated vortices increased in intensity, the resulting error was less affected by high
wavenumber asymmetries and had a larger dependence on position error.

Since the distribution of vortex positions and wavenumber zero structures were shown to have the
largest influence on the ARW ensemble during later time steps, the Rotunno-Emanuel (1987) vortex model
was used to estimate the same state variable relationships. Random Gaussian errors with zero mean were
added to the initial conditions of RE87 prior to model integration and coherent error structures developed
after an ensemble lead-time of five days. Our examination for both model experiments was restricted to a
400 x 400 x 18 km® model subspace that captured the inner-core errors and resulting correlations. Previous
research (e.g. Houze et al. 2007; Chen et al. 2007; Davis et al. 2008) suggests that the dynamical features of
this region may have a profound influence on intensity fluctuation, intensification and decay. Our study
was motivated by the small to large-scale error propagation that occurs when inner-core features of an
initialized TC vortex are structurally inconsistent, or ill-accounted for during model analysis time steps.

Our results demonstrate how a better understanding of TC error growth dynamics, and linear
predictor relationships for complex regions, such as the inner-core, can be achieved through analysis of
both high- and low-order forecast ensembles. The structural similarities between ARW and RES87
correlations also suggest that a low-order, two-dimensional model may be developed as a computationally
inexpensive alternative to estimating flow-dependent covariance for TC data assimilation under ideal
conditions in which an intense tropical cyclone already persists in the background flow field. Since
ensemble data assimilation systems have the disadvantage of having to integrate O(100) model states for
adequate background error estimation, this approach would eliminate the astringent efforts currently used
when high-resolution, cloud resolving models are applied for TC prediction. Such a method would also
provide a means of introducing flow-dependent error into a variational data assimilation algorithm.
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