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1. INTRODUCTION

Extratropical transition (ET) is a complex, multi-
stage physical process during which a tropical cyclone 
(TC) interacts with the midlatitude environment and 
evolves from a warm-cored tropical system into a cold-
cored midlatitude cyclone. A full review of extratropical 
transition and recent research is given in Jones et al. 
(2003). Although every tropical cyclone undergoes a 
unique evolution during and after the ET process, 
transitioning storms are often placed into one of two 
categories, intensifiers or dissipaters, based on their 
relative intensity evolution following ET (e.g., Demirci et 
al. 2007; Kofron et al. 2010). The transition process 
itself has been defined by Klein et al. (2000) as a 
dominantly two-phase process: the first being the 
transformation stage, and the second being the 
reintensification phase. Klein et al. (2000) found that 
intensifying and dissipating storms are especially 
difficult to distinguish during the first stage of ET, since 
all storms are generally moving into the midlatitude 
environment and weakening as they interact with the 
high levels of vertical wind shear associated with the 
midlatitude westerlies and low-level baroclinic zone in 
the midlatitudes (Figure 1). Thus the structure of all the 
storms moving poleward tends to appear very similar 
prior to the second stage of ET.

Despite this lack of differentiation between 
dissipating and re-intensifying classes in the storms 
themselves prior to the end of phase 1 of ET, recent 
studies have suggested that the spatial relationships 
between the TC and midlatitude upper-level trough are 
able to provide a capacity to predict the outcome of ET 
(Harr et al. 2000; Ritchie and Elsberry 2007). Based on 
these results, researchers have begun examining the 
practical application of these findings toward post-ET 
intensification prediction. Demirci et al. (2007) examined 
the problem from a spatial and spatiotemporal projection 
pursuit approach. The method involved empirical 
orthogonal function (EOF) analysis of the Navy’s 
Operational Global Assimilation and Prediction System 
(NOGAPS) 500 hPa geopotential height analyses 
centered on each storm every 12 hours from 48 hours 
before ET to 48 hours after ET. Spatiotemporal 
techniques allowed for peak performance ~82% using 
fields from 12 and 24 hours before ET together, nearly 
matching the performance of the NOGAPS model itself 
at 24 hours prior to ET.
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In this study, we have built on the work of 
Demirci et al. (2007) by looking at transitioning storms in 
high dimensional spaces and using advanced support 
vector machine (SVM) classification techniques in the 
hope of further improving forecasting range and 
performance with respect to post-ET intensity change 
classification. 

2. METHODOLOGY

Tracking Individual Storms and ET Time Determination

Overall, 108 western North Pacific tropical 
cyclones which underwent extratropical transition 
between January, 2000 and December, 2008 were 
identified and processed. For each storm, ET time was 
defined as the first time that the storm appeared as an 
open wave on the mid-latitude trough in the Global 
Forecast System (GFS) Final Analysis (FNL) 500-hPa 
geopotential height analyses using a 20 m contour (e.g. 
Figure 1).  

After an ET time was established for each 
storm, the storm was then tracked in the model analysis 
from 72 hours before the ET time (ET-72) to 72 hours 
after the ET time (ET+72) at an interval of 6 hours. The 
storm center was determined by locating the lowest 
mean sea level pressure (MSLP) in an area surrounding 
the storm. These tracking data were archived and used 
to center the model data around the storm center at a 
distance of +/- 30 degrees longitude, and +/- 25 degrees 
latitude, and to save pressure-level fields of all available 
atmospheric model variables for each storm at each 
relative ET time. Thus, each storm variable field for each 
relative ET time was composed of 3111 (61 x 51) 
observations, corresponding to the storm itself and its 
surrounding environment before, during, and after ET. 

All basic raw model output fields from the GFS 
FNL model were tested using an SVM classifier and 5 
testing sets of storms. In particular, 850 hPa potential 
temperature fields captured the structure of the TC 
itself, but perhaps more importantly also captured the 
location and intensity of frontal zones and associated 
mid-latitude features (Figure 2). Therefore these fields 
were chosen as the inputs of choice for the results 
shown in this paper.

Storm Classification

Classification for each tropical cyclone was 
determined by observing changes in the mean sea level 
pressure (MSLP) at the center of each storm (MSLPTC ) 
through its ET evolution, as well as changes in the 
MSLP surrounding the storm (MSLPENV). Storms for 
which MSLPENV – MSLPTC increased more than 3 hPa 
between ET +/- 6 hours and ET+54 +/- 18 hours were 
categorized as positive storms; that is, storms which 



intensified substantially post-ET. All other storms were 
categorized as dissipating (negative) storms. This 
system of categorization resulted in 53 positive storms 
and 55 negative storms overall.

Data Pre-processing

Due to the large amount of data available in the 
form of 3111 spatial data points, the first pre-processing 
step was to reduce the dimensionality of the inputs 
using feature selection, while attempting to best retain 
information content that would be useful for 
classification. For this task the Correlation-based 
Feature Selection (CFS) method developed by Hall 
(1999) was used. The main premise behind this 
selection method is that the best features for 
classification are those which are most highly correlated 
with the classes (intensifiers and dissipaters), and at the 
same time least correlated with other features. For this 
study, a forward selection version of the CFS method 
was used, where the system first chooses the best 
individual feature based on the metric:
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where Ms is the merit metric, k is the number of features 
in the subset, rcf is the outer correlation between 
features and classes, and rff is the inner correlation 
between features. Subsequently, the first 'best' feature is 

combined with each other feature, and Ms is 
recalculated for each. The feature combination that 
maximizes Ms is then chosen iteratively up until a 
chosen number of input features is reached. In the 
interest of further reducing dimensionality and 
preventing over-training, as well as to promote 
consistency throughout all relative ET time, only 20 
features were used as inputs into the classification 
system at all times during ET evolution.

The second pre-processing step involved 
dividing the storms into training, validation, and testing 
data subsets and centering and scaling all of the 
variable inputs between storms using the mean and 
standard deviation within each subset. To evaluate the 
classification system, K-fold cross-validation was used 
as a means of producing training and validation sets. 
This method is appealing because it allows all inputs to 
be used both in the training and in the validation of the 
classification system. For all of the evaluations, 20% (21 
storms) of the data were held out for final testing and 10 
folds were used for training and validation (remaining 87 
storms). 

Support Vector Machines and Model Selection

Support vector machines (SVMs) are a specific 
type of classifier that combines the concepts of a 
maximum margin with kernel techniques in an attempt 
to classify sparse data sets in a manner that maximizes 
generalization capacity. The basic premise is to find a 
hyperplane that perfectly classifies all inputs, while 
optimizing the normal margin between the classes to be 
as wide as possible (for a full review, see Burges,1998).

Figure 1. Panel of 500-hPa geopotential heights at ET-72 (left), ET (middle), and ET+72 (right) for Kong-Rey (2001 - 
reintensifyer) and Wutip (2001 - dissipater). In each panel, the black dot represents the determined storm center 
based on storm tracking and MSLP.



In this study, an RBF kernel function is used in the SVM 
calculations: 
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where xi and xj are individual observation vectors and σ 
is a parameter, which controls the areal influence of 
each observation. Both the margin parameter and sigma 

influence the number of support vectors, which are 
chosen by the trained SVM.  The support vectors are 
those observations (storms in this case), which, if 
removed, would alter the hyperplane solution. The best 
model parameters are chosen in the following manner: 
(1) iteratively test classification performance for values 
of C (1e-6, 1e-5, ...., 1e-1) and RBF kernel parameter 
sigma (2, 2.25, ...., 10), using a 2-norm soft-margin SVM 
system on each of 10 cross-validation folds; (2) 
determine mean estimated true error based on 

Figure 2. Mean 850-hPa potential temperature field for 53 post-ET intensifying storms (left) and 55 post-ET 
dissipating storms (right) at 72 hours prior to ET (top), 36 hours prior to ET (middle) and at ET (bottom). All frames are 
centered on the TC. The upstream trough (dashed line) and downstream ridge (solid line) generally associated with 
ET are indicated.  Whitened pixels represent those chosen by the CFS feature selection system as most useful for 
class discrimination.
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generalization for each parameter combination for each 
fold, calculated as follows:
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where k is the number of folds and Ei is the 
generalization error for each fold; and (3) choose 'best' 
model parameters based on mean estimated true error, 
and use these model parameters to train an SVM and 
classify the held out test data. From this procedure, 
ideal model parameters, mean training set error, mean 
estimated true error, and actual test set error are 
determined at each relative ET time (ET-72 to ET+72).

3. RESULTS

A time-series analysis of class-averaged MSLP 
for intensifying versus dissipating storms (Figure 3) 
suggests that the two classes display almost identical 
intensity evolution during the 72 hours leading up to ET. 
This trend is in agreement with the findings of Klein et 
al. (2000). In both classes, storms on average tend to 
slowly weaken from ~ET-24 to ET time, before quickly 
diverging in behavior after ET. Note that by ~30 hours 
after ET, the two classes have statistically diverged. 
These results both suggest that the method of storm 
classification used in this study is reasonable, and that, 
as previously suggested, storms which intensify and 
weaken post-ET are very difficult to differentiate prior to 
the completion of the ET process using only data about 
their intensities leading up to ET.

Figure 2 shows sample features that were 
chosen prior to ET for 850-hPa potential temperature 
fields, overlaid onto intensifier and dissipater mean 
fields at ET-72, ET-36 and ET, respectively. Note that 
the correlation-based feature selection method tends to 
select features that describe the mid-latitude 
environment surrounding the storms over features of the 
storms themselves, particularly prior to ET. Observation 
locations that correspond to the relative position and 
intensity of the midlatitude trough to the northwest of the 
storms tend to be chosen as the most useful for 
differentiating classes at ET-72. Interestingly, data to the 
south and southeast of the storm centers are also 
chosen, representing differences in thermodynamic 
properties of the tropics themselves. Despite their lack 
of selection here, features of the downstream ridge have 
been identified in past studies as important to the 
eventual outcome of ET. Since the downstream ridge is 
usually identified as building ahead of the TC from the 
anticyclonic outflow, its presence and impact may be 
better identified in upper-level fields. 

Features from the downstream ridge are, 
however, chosen by the CFS system at ET-36, 
suggesting that differences in these features, such as 
the low-level frontal development, between positive and 
negative storms may become more evident as ET time 
approaches. Features near the storm center, particularly 
to the southwest where the cold frontal development is 
occurring, also become more important in differentiating 
classes at this time. At ET time itself, features closest to 
the storm center begin to become the best for class 

Figure 3. Time series of average intensity for post-ET intensifiers (solid black line) and dissipaters (dashed gray line). 
One standard deviation is plotted for each set. Note that, on average, the two classes of storms undergo a very 
similar intensity evolution before ET, and do not fully statistically diverge until ~ET+30 hours.



differentiation, probably because by this time the details 
of the trough interaction with the TC itself are the 
important differentiators.  This sequence completes a 
movement from concentration on the upstream trough, 
to the downstream ridge, to the storm itself from ET-72 
to ET time.

Overall classification performances (for the test 
set and validation sets) for 850-hPa potential 
temperatures through time (ET-72 to ET+72) are given 
in figure 4. These performance numbers are based on 
raw outputs of the SVM classifier. It can be seen that the 
testing data have slightly poorer performance than the 
training data prior to the ET time and are comparable or 
even slightly better after the ET time.  This is not an 
unexpected result, and improvements over this may be 
obtained simply by increasing the training set to ensure 
that a more representative sample of ET cases exist in 
the training statistics. Examination of the receiver 
operator characteristics (ROC) curves for times leading 
up to ET (figure 5) suggests that better performance 
could also potentially be obtained by changing the 
threshold of the classifier. The raw SVM output 
performance reflects only a single point on the ROC 
curve, and purposefully allowing a certain amount of 
false detection may provide for a more robust detection 
system overall. For example, one could potentially 
achieve a positive detection rate of 80%, at 72 h prior to 
the ET time if a false alarm rate of 27% were an 
acceptable risk (Fig. 7).  Despite this fact, even using 
raw SVM output, this prediction system correctly 

classifies ~76% of storms (16 out of 21) at 72 hours 
prior to ET. 

4. DISCUSSION

Our SVM-based classification system for post-
ET intensity forecasting displays encouraging results, 
with over three quarters of storms being correctly 
classified at 72 hours prior to ET in the randomly chosen 
testing set. Performance is consistently in the range of 
60-75% leading up to ET, with the exception of the few 
times immediately before the start of the ET process. 
Performance falls off at this point, which is potentially an 
artifact of the lack of spatial pattern differences at these 
times. Once the storms are beginning the ET process, 
both post-ET intensifiers and dissipators are both 
becoming features on the midlatitude trough and 
generally weakening and undergoing structural changes 
associated with interaction with the baroclinic zone. The 
decrease in performance is thus likely due to the loss of 
large-scale spatial pattern differences at this point, and 
a movement toward differences in TC structure itself. 
However, as expected, model performance quickly 
increases after the completion of ET (around ET+12), as 
the process has completed and the storm is now either 
intensifying or dissipating. At this point, the pattern 
recognition system is able to focus on features within 
and immediately surrounding the TCs which suggest 
considerable differences in relative size and strength of 
the disturbance between classes.

Of the 4 storms that are consistently 

Figure 4. Time series of raw SVM classifier performance for 850-hPa potential temperature data and 20 features 
chosen by CFS. Validation results are plotted in solid gray and provide an estimated model error based on a 10-fold 
K-fold cross-validation procedure. Training results are plotted in dashed gray and provide a metric of how well the 
model is forced to fit the original data from which it is trained. Testing results are plotted in solid black and represent 
model performance on a randomly selected fully independent test set of 21 storms (20% of all data).



misclassified leading up to ET (1 intensifier and 3 
dissipators), 2 seem to undergo intensity changes that 
are fairly representative of dissipaters, and it is not yet 
clear why they were misclassified at so many time 
periods. One other dissipater actually re-intensifies 
almost enough to have fallen into the re-intensification 
class and so the classifier may have difficulty with this 
storm. The one misclassified reintensifying TC actually 
weakens for a considerable time after ET, and only 
begins to reintensify around ET+48. Therefore it is not 
surprising that our pattern recognition system has some 
difficulty in classifying it as a re-intensifier prior to ET.

Although the method presented in this paper 
provides encouraging results for pattern recognition use 
in the forecasting of post-ET re-intensification, there are 
several limitations which will be addressed in the future. 
First, the overall system is a highly non-stationary 
system (the Earth's atmosphere), and seasonal and 
inter-annual variability of the input variables (850-hPa 
potential temperature) are not accounted for.  Therefore 
the mean which is removed from the positive and 
negative storms individually may not be representative 
for many off-season storms or storms from strong El 
Niño or La Niña years. A movement toward either a 
removal of a seasonal mean or inclusion of temporal 
information as a feature in the classification system is 
needed, and is likely to improve the system's 
performance. Second, it will be vital to test more 
atmospheric variables both individually and in 
combination to see if there are certain fields which 

provide even better predictive ability. Lastly, the system 
simply needs a larger set of training data for improved 
performance. The CFS method has suggested that ~40 
features are useful in class discrimination, but this 
number is simply unreasonable in a pattern recognition 
problem with under 100 training samples.  It will 
therefore be vital to continue growing the training set as 
new model data becomes available for TCs which have 
undergone ET.
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