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Abstract 

 

The Regional Climate Change Index (RCCI) is employed to investigate hot-spots under 21st 

century global warming over Africa. The RCCI is calculated on 1-degree resolution grid from 

the ensemble of CMIP3 simulations for the A1B, A2 and B1 IPCC emission scenarios. The 

RCCI over Africa captured sub-regional variability over the seven sub-regional hot-spots  such 

as Southern Mediterranean, Sahara, Western Africa, Eastern Africa, Equatorial Africa, Southern 

Equatorial Africa, and Southern Africa. Contributions from different factors to the RCCI are 

discussed for the sub-regions. Analysis of the temporal evolution of the hot-spots throughout the 

21st century shows different rates of response time to global warming for the different sub-

regions. Hot-spots have emerged in the Southern Mediterranean and Sahara. These hot-spots 

become evident by the mid of the 21st century and it is the most prominent by the end of the 

century. While hot-pots are generally evident in all the 7 sub-regions for the A2 scenario, in the 

A1B scenario, the hot-spots of Southern Mediterranean, Sahara, and South Africa emerge in the 

last 20 year period of the 21st century. No hot-spot emerge in the B1 scenario, which has the 

lowest GHG concentrations except for the Southern Mediterranean during the period 2061-2080. 

Our analysis indicates that sub-regional hot-spots show a rather complex spatial and temporal 

dependency on the GHG concentration and on the different factors contributing to the RCCI.  

 

1. Introduction  

 

Lying between latitudes 37° north and 35° south, Africa has virtually the same climatic zones in 

the Northern Hemisphere as in the Southern Hemisphere, and they are arranged symmetrically 

on either side of the equator. The zones are determined mainly by latitude, except in the east 

where highlands greatly modify the climate. Africa is the most tropical of the continents: Only its 

northern and southern extremes are directly influenced by mid-latitude westerly winds and are 

considered to have temperate climates.  

Most of Africa lies between the Tropic of Cancer (in the north) and the Tropic of Capricorn (in 

the south) and has high temperatures throughout the year. The amount, duration, and seasonal 

distribution of rainfall is therefore the most important factor differentiating its climates. Africa 



has six types of climatic zones: tropical wet, tropical summer rainfall, semiarid, arid, highland, 

and Mediterranean.  

It is by now well established that greenhouse gas (GHG) emissions of anthropogenic origin have 

affected the Earth’s climate in the 20th century and will increasingly do so in the 21st. As 

reported by IPCC (2007), the observed global average warming in the last hundred years (1906–

2005) is about 0.74°C (0.56-0.92°C) and most of the warming since the mid-20th is very likely 

due to the increase in anthropogenic greenhouse gas concentrations. It is projected that global 

warming by the end of the 21st century (2090–2099) relative to 1980–1999 will be in the range 

of 1.1-6.0°C depending on the underlying GHG emission pathway. 

 

 



This paper examining the change of African climate, especially temperature and rainfall, is set in 

the wider context of our emerging understanding of human influences on the larger, global-scale 

climate. Increasing greenhouse gas accumulation in the global atmosphere and increasing 

regional concentrations of aerosol particulates are now understood to have detectable effects on 

the global climate system (Santer et al. 1996). These effects will be manifest at regional scales 

although perhaps in more uncertain terms (Mitchell & Hulme 1999, Giorgi & Francisco 2000). 

Africa will not be exempt from experiencing these human-induced changes in climate.  

Nevertheless, it is of considerable interest to try and explore the magnitude of the problem that 

the enhanced greenhouse effect may pose for African climate and for African resource managers.  

The sensitivity of the climate response to global warming over different regions is a critical issue 

in current international climate change research because this information is needed for impact 

assessment and adaptation policies. In a previous paper, Giorgi (2006) developed a Regional 

Climate Change Index (RCCI) to identify the relative response of different regions of the world 

to GHG-induced global warming. The RCCI is based on the change in mean and interannual 

variability of temperature and precipitation averaged over a given area and it measures the 

relative response to global warming across regions. Giorgi (2006) calculated the RCCI for 26 

land regions of sub-continental size from the Phase 3 of the Coupled Model Intercomparison 

Project (CMIP3) ensemble of simulations recently conducted with coupled Atmosphere-Ocean 

General Circulation Models (AOGCMs) in support of the fourth assessment report of the 

Intergovernmental Panel on Climate Change (IPCC AR4). Giorgi (2006) identified a number of 

prominent climate change hot-spots, in particular the Mediterranean, Northeastern Europe and 

Central America.  

It is important to stress that, as will be seen, the RCCI is a comparative index, that is a small 

RCCI value does not imply a small absolute change, but only a small climate response compared 

to other regions, which means that we can consider the RCCI as a sensitivity index.  

In this chapter we will present the result of our analysis over seven regions in Africa and 

determine the regions that will exhibit big, moderate and small climate response under three 

scenarios A1B, A2 and B1 i.e. over their average “Ensemble”.  

Therefore in this paper we perform a RCCI analysis along the lines of that introduced by Giorgi 

(2006) but at a higher horizontal resolution over Africa. This allows us to quantify the sub-

regional variability of the climate response to global warming and to identify whether climate 



change hot-spots exist over different sub-regions of Africa. The analysis is performed using the 

same definition of RCCI as in Giorgi (2006) and the same set of AOGCM simulations. We also 

address issues of sensitivity of the RCCI to different GHG emission scenarios and to different 

periods within the 21st century.  

We will, also, follow the RCCI in the five 20-year periods of the 21st century to study the 

dependency of the regional hot-spots on the GHG forcing, under A1B, A2, B1 and scenario 

ensemble.  

In the next section we first describe data and analysis technique. We then discuss the results in 

Section 3 and present our main conclusions in Section 4.  

 

2 Data and Methodology  

 

The CMIP3 dataset employed in the study is summarized in Table 1. It includes 14 models from 

laboratories worldwide spanning a horizontal resolution of about 1-4 degrees. It is noted that 

only 14 of the 23 CMIP3 models are selected in the analysis because they performed all the 

following simulations (see Table I): 20th century climate using observed GHG and aerosol 

forcing (referred to as 20C experiments), 21st century climate using GHG and aerosol forcing 

from the A1B, A2 and B1 emission scenarios of IPCC (1990). This set of scenarios spans almost 

the entire IPCC scenario range, with the B1 being close to the low end of the range (CO2 

concentration of about 550 ppm by 2100), the A2 to the high end of the range (CO2 

concentration of about 850 ppm by 2100) and the A1B to the middle of the range (CO2 

concentration of about 700 ppm by 2100). Some models include multiple realizations for the 

same experiment (Table 2.2), in which case only one realization is used in the analysis.  

Monthly data for the CMIP3 experiments are obtained from the PCMDI web site (www.pcmdi-

llnl.gov) and the reader is referred to this web site for more information about the participating 

models. Each CMIP3experiment consists of a control run ( 1901 – 1999) with constant (‘‘present 

day’’) atmospheric CO2 and of a greenhouse run (2000 – 2099 ) with a standard gradual (1% 

yr21 compound) increase in CO2. Because the models utilize different horizontal grids, for 

intercomparison purposes we interpolate the model data onto a common global 1 degree grid.. In 

addition, a common 1-degree land mask grid is defined, based on the half-degree grid of the 

observed dataset from the Climatic Research Unit (CRU) of the University of East Anglia (New 



et al. 2000). This land mask grid is used as base for the calculations and, as a result, since the 

different models have different resolutions and thus different land configurations, this adds some 

uncertainty over coastal areas. However, this uncertainty is not large over the region of interest 

because the African coastline does not show very complex features.  

The RCCI is calculated for 7 land regions of Africa from the latest set of climate change 

projections by 14 global climate models mentioned above for the A1B, A2 and B1 IPCC 

emission scenarios. Note that these scenarios almost encompass the entire IPCC scenario range, 

the A2 being close to the high end of the range, the B1 close to the low end and the A1B lying 

toward the middle of the range.  

The RCCI is calculated for 7 land regions of Africa from the latest set of climate change 

projections by 14 global climate models mentioned above for the A1B, A2 and B1 IPCC 

emission scenarios.  

Note that these scenarios almost encompass the entire IPCC scenario range, the A2 being close 

to the high end of the range, the B1 close to the low end and the A1B lying toward the middle of 

the range.  

A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional 

mean surface air temperature relative to the global average temperature change (or Regional 

Warming Amplification Factor, RWAF), change in mean regional precipitation (ΔP, % of 

present day value), change in regional surface air temperature interannual variability (ΔσT, % of 

present day value), change in regional precipitation interannual variability (ΔσP, % of present 

day value). In the definition of the RCCI it is important to include quantities other than the mean 

change because often mean changes are not the only important factors for determining impacts 

[e.g., Mearns et al., 2001]. We thus also include interannual variability, which is critical for 

many activity sectors, such as agriculture or water management. The RCCI is calculated for the 

above mentioned set of global climate change simulations and is intercompared across regions to 

identify climate change Hot-spots,that is regions with the largest values of RCCI.  

Here ‘‘change’’ indicates the difference between the future 20-year climate periods of the 21st 

century and a present day climate period minimally affected by greenhouse gas (GHG) forcing 

(1960–1979).  

As a measure of temperature interannual variability we use the interannual standard deviation 

(ΔσT) calculated for the selected 20-year periods. As a measure of precipitation variability we 



use the coefficient of variation (i.e., the standard deviation divided by the mean, here denoted as 

ΔσP), which removes the dependency of the precipitation standard deviation on the mean. Both 

ΔσT and ΔσP are calculated after de-trending the data over the 20-year periods to obtain 

unbiased estimates of variability (Ra¨isa¨nen, 2002).  

The RCCI is here defined as in Giorgi (2006), except that the entire yea is divided into two six 

months periods, MAMJJA and SONDJF.  

RCCI=[n(ΔP)＋n(ΔσP)+n(RWAF)+n(ΔσT)]M..A+[n(ΔP)＋n(ΔσP)+n(RWAF)+n(ΔσT)]S.F     

..(1)  

As in Giorgi (2006) the integer n varies from 0 to 4 as described in Table 2.3 Note that small 

changes below a certain threshold do not contribute to the index (n=0) and that larger changes 

are weighted more heavily (i.e., the factor n doubles from each category to the next). As an 

illustrative example, if ΔP is the change (2081-2100 minus 1961-1980) in average precipitation 

for a given region, it is obtained via the follow steps: 1) Calculate ΔP for each individual region, 

averaging over each grid point in the region; 2) Average over the different models; 3) Average 

over the three scenarios (A1B, A2, B1). The same procedure is used to calculate grid point 

values (except for the regional averaging of course) and the values of RWAF, ΔσT and ΔσP.  

 

3 Results  

 

Figure 1 shows the fine scale geographical distribution of the RCCI over Africa based on data 

compounded from each of the three scenarios A1B, A2, and B1 for the periods: 2081-2100, i.e. 

the period when the climate change signal is maximum, with respect to 1961-1980.  

We find that the RCCI shows pronounced spatial variability over this region, varying from 

values less than 8 to greater than 16.  

SMED and SAH have the largest RCCI value, where the contribution comes from the increase in 

precipitation interannual variability in MAMJJA and SONDJF seasons, decrease in mean 

precipitation in the two seasons, and small increase in the RWAF in MAMJJA. WAF, EAF, EQF 

have similar RCCI values and the contributions come from the increase in mean precipitation in 

the SONDJF season.  



SAF RCCI value is relatively large and the contributions come from the decrease in the mean 

precipitation in the MAMJJA season, and small increase in the precipitation variability in the 

two seasons.  

The contributions of the different components of the RCCI, in the period 2081-2100, for 

ensemble of the three scenarios (see Eq. 1) are shown in Figures 2. The contribution of 

precipitation generally shows complex patterns and substantial variability, especially for the 

interannual variability. For mean precipitation we can see symmetrical patterns around the 

equator which is consistent with the symmetry in the climatic zones in the northern and southern 

hemispheres in Africa. We find a large decrease in precipitation over the SMED in every sub-

region, SAH in Egypt and Libya in MAMJJA and a small increase over the southern parts of 

Egypt, Libya and Algeria, but the value of the decrease exceeds that of the increase so when 

averaging over the SAH area, the decrease in precipitation is dominant in SONDJF case. Over 

SAF we find a large decrease in precipitation in the MAMJJA case. Over EQF, there is a small 

increase in the precipitation in MAMJJA and a large increase in SONDJF. Over WAF there is a 

small increase in precipitation in the SONDJF case. A large increase in precipitation is found 

over the EAF in the SONDJF season. In SQF an increase in precipitation over large parts in 

Tanzania and Congo balanced – to some extent- by decrease in precipitation.  

The contribution of the changes in interannual variability shows complex patterns and marked 

geographical variations. As mentioned we mostly find an increase in variability, with noticeable 

exceptions occurring over parts in Mali and Niger in the WAF, North West of Sudan in EAF, 

and over Uganda in the EQF. The increase in variability is especially pronounced over SMED 

and SAH in the two seasons, while in SQF and SAF we find small increase in the precipitation 

variability. The marked spatial variability of the change in variability further highlights the need 

of a fine scale analysis of climate change variables.  

The contribution of mean temperature change compared to global temperature change (RWAF) 

in both seasons shows a latitudinal gradient, with maximum values in the northern regions and 

decreasing values toward the equator, then increases again toward the south, with low values ( < 

1.1 ) around the coast line of Africa. This result is consistent with the basic latitudinal 

distribution of warming, which is generally maximum over high latitude and high elevation 

northern hemisphere regions due to the melting of  



land and sea ice and the associated ice-albedo feedback mechanism, (Giorgi et al., 1997; Meehl 

et al. 2007 (CHAPTER10)), and also robust with the symmetry of climatic zones in the Northern 

Hemisphere as in the Southern Hemisphere, as they are arranged symmetrically on either side of 

the equator. The RWAF thus produces large contributions to the SMED, SAH and SAF regions.  

The contribution of changes in interannual temperature variability shows a more complex spatial 

distribution. In MAMJJA this contribution is especially large over the SAH in the north Egypt 

and north Libya, middle WAF and middle SQF. In SONDJF, the contribution of temperature 

variability change is maximum over the middle SQF. The west coast of Africa exhibits very 

small decrease in the temperature variability in the SONDJF season. Every region does not have 

large contribution from the temperature variability, which again sheds light on the need of not 

only the fine scale analysis of the climate variables but also a sub-region averaging of each of the 

seven regions.  

In summary, the RCCI and the underlying changes that contribute to it, exhibit marked sub-

regional variability that allows us to identify more hot-spots at spatial scales smaller than the 

sub-continental one used.  

 

3.2. Dependency of the sub-regional hot-spots on the GHG forcing 

 

The GHG forcing in the 21st century varies as a function of GHG emissions and concentrations, 

which in turn vary as a function of time and scenario (IPCC 2000). It is therefore important to 

investigate possible dependencies of the sub-regional hotspots on the GHG forcing. Figure 3 first 

shows the RCCI values averaged over each of the 7 regions of Africa calculated for 5 successive 

20-year periods (2001-2020, 2021-2040, 2041-2060, 2061-2080, 2081-2100) with respect to 

1961-1980 and for the mid-range A1B scenario, high-range A2 scenario, low-range B1scenario, 

and their average. In general, we find increasing values of RCCI with time, and thus with GHG 

forcing.  

If for illustrative purposes we define an RCCI threshold of 10 to identify a hot-spot, the first to  

appear in 2021-2040 is SAH for A2, and having only a slightly smaller value for A1B and 

smaller in B1 scenario. The SMED and SAH hot-spots clearly emerge in 2041-2060 and remain 

well established (although with different temporal paths) with values greater than 10 for the rest 

of the century except for B1 scenario. The WAF and SQF hot-spots emerge in 2081-2100 for A2 



scenario, the EAF and EQF hotspot emerges in 2061-2080 for A2 scenario and for A1B for SAF 

hotspot and maintain the largest RCCI values for the last decades of the century. The WAF, 

EAF, EQF and SQF show the least dependence on time (and GHG forcing). By the end of the 

century (2081-2100) SMED, SAH and SAF hot-spots identified are established except under B1 

scenario, where the RCCI never exceeds 10, and consistent with those found by combining 

results from the three scenarios. The key message of Figure 3 is thus that different hot-spots 

emerge at different times of the 21st century (thus at different GHG forcing) and exhibit different 

temporal pathways throughout the 21st century.  

For the period 2081-2100, figure 3 also compares the RCCI value under B1, A1B, A2 scenarios 

and their average, separately. Mostly the RCCI values increase with the GHG concentration and 

forcing, i.e. they are minimum in the B1 (low GHG) and maximum in the A1B and A2 (high 

GHG) scenarios except for EAF. Only the SMED and SAH hot-spots have RCCI values greater 

than 16, except for B1 scenario. The SMED and SAH hot-spots are the greatest in the A1B and 

A2 scenarios, but are not strong in the low GHG scenario B1. Finally, the EAF hot-spot show a 

different behavior from the rest, being greater in the B1 than the A1B scenarios. This implies that 

the dependency of the hot-spot on the forcing is not scenario-monotonic for all regions.  

Also shown is the evolution of the values when all the scenarios are considered together (denoted 

as “ensemble”, note that the RCCI for the ensemble is not the average RCCI of the three 

scenarios, but is calculated after averaging the climate change variables across the scenarios). 

Figure 3 illustrates well the different behavior across hot-spots. The RCCI for the SMED, SAH, 

and SAF regions (i.e. the northernmost and southernmost ones) increases almost linearly with 

time in the full ensemble average. However we also notice a decrease towards the end of the 

century for the SMED region in the B1 scenario, a decrease towards the end of the century for 

the SAH region in the A2 scenario, and a decrease towards the end of the century for the SMED 

and SAH regions in the A1B scenario.  

For SMED, SAH, SQF, and SAF we see a monotonic increase of the RCCI, for scenario 

ensemble. The RCCI of the WAF and EQF regions flattening until the period 2021-2040, then 

increases monotonically. For the EAF region the RCCI increases until 2041-2060, followed by 

flattening until 2061-2080, then increases again toward the end of the century.  

From figure 3 we can also compare the spread of the RCCI across scenarios with that across time 

slices. This spread can also be considered as a measure of uncertainty. The spread across time 



slices dominates for all regions except for the SMED and SAH regions in the 2061-2080 and 

2081-2100 periods, where the spread across scenarios dominates, while for the other hot-spots 

the dependency of the RCCI on time and scenario (and thus on GHG forcing) is relatively small, 

indicating a robust behavior of the hot-spot. In summary, Figure 3 is indicative of a rather 

complex spatial and temporal dependency of the sub-regional hot-spots on the GHG 

concentration (and forcing). This makes it difficult to linearly extrapolate the results of a RCCI 

analysis across regions, scenarios and time slices.  

Finally the temporal evolution of the different contributions to the RCCI in the hot-spot regions 

is shown in Table 4 for scenario average. We again find markedly different behaviors across 

regions. The dominant contribution for the increase in RCCI value over the SMED and SAH 

regions is a mix of contributions from mean and variability changes in both seasons.  

 

3.3. Summary and Conclusion  

 

In this study we presented a fine scale analysis of the climate change signal over Africa from the 

CMIP3 ensemble based on the RCCI introduced by Giorgi (2006). It may be noted that RCCI is 

a comparative index and not an absolute one, i.e. it is designed to compare the climate change 

signal across regions but not to provide an absolute indication of the magnitude of the signal. 

This implies that small RCCI values are not necessarily an indication of a small magnitude of the 

change signal. Second, the RCCI combines information from different change indicators without 

weighting the importance of such indicators for local impacts. It is therefore possible that 

different variables used to define the RCCI might be more (or less) important for given impact 

applications. In addition, the choice of variables is somewhat subjective. For example, the RCCI 

does not include measures of extremes (although it might be expected that variability and 

extremes are somewhat related). Different choices of variables might lead to different measures 

of change and in fact Baettig et al. (2007) have proposed several change indices. In this regard, 

our preliminary tests show that in Giorgi’s definition of RCCI, the choice of the values of the 

integer is not critical for the identification of sub-regional hot-spots.  

The first major conclusion of our work is that, although as a whole Africa does not show a large 

RCCI compared to other regions of the world (i.e. it is not identified as a prominent climate 

change hot-spots, Giorgi 2006) ), it still includes clearly identifiable sub-regions with high RCCI 



values (i.e. sub-regional hot-spots). More specifically, we identify seven such hot-spots. This 

calls for a high resolution analysis to identify sub-regional hot-spots within broad sub-continental 

scale regions.  

Our results also show that different hot-spots can exhibit markedly different response to GHG 

concentrations/forcings in terms of the timing of emergence and development of the hot-spot. In 

addition, the different contributions to the RCCI show complex temporal and cross-regional 

behavior.  

These results point to the limitations of using linear scaling assumptions in this type of analysis, 

at least at the sub-regional scale identified here.  

The identification of sub-regional hot-spots may provide important information for climate 

impact assessment studies and for designing priorities in terms of national and cross-national 

adaptation and mitigation policies. In this regard, the RCCI only provides an overall measure of 

climate response based on a limited number of variables and it is not aimed at specific impact 

studies. A RCCI-based analysis can be especially useful in providing insights on the behavior of 

regional climate changes in relation to globally averaged warming and as such it can provide a 

useful tool to identify sub-regions that are responsive and possibly vulnerable to climate change.  
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Tables 

Table 1 List of CMIP3 Models and Simulations Used in the Analysis 



Models Grid 
interval Origin 

Scenarios and ensemble members 
20C A1B A2 B1 

CCMA-3-T47 ~2.7 deg CCMA, Canadian 5 4 2 4 
CNRM-CM3 ~2.8 deg CERFACS, France 1 1 1 1 

CSIRO-MK3 ~2.3 deg CSIRO Atmos. Res., 
Australia 2 1 1 1 

GFDL-CM2-0 ~2.2 deg Geophys. Fluid. Dyn. 
Lab., USA 3 1 1 1 

GISS-ER ~4.5 deg NASA Goddard Inst., 
USA 1 2 1 1 

INMCM3 ~4.5 deg Insit. Numer. Math., 
Russia 1 1 1 1 

IPSL-CM4 ~3.0 deg IPSL, France 1 1 1 1 
MIROC3-2M ~2.8 deg JAMSTEC, Japan 3 3 3 3 

MIUB-ECHO-G ~3.2 deg Germany/Korea 5 3 3 3 
MPI-ECHAM5 ~2.3 deg MPI, Hamburg, Germany 3 2 3 3 
MRI-CGCM2 ~2.8 deg MRI, Japan 5 5 5 5 

NCAR-CCSM3 ~1.4 deg NCAR, USA 8 6 4 8 
NCAR-PCM1 ~2.8 deg NCAR, USA 4 3 4 2 

UKMO-HADCM3 ~3.0 deg UK Meteorological Office 1 1 1 1 
 

Table 2 Values of the factor n in the definition of the RCCI. 

n ∆P ∆σ RWAF P ∆σT 
0 <5% <5% <1.1 <5% 
1 5-10% 5-10% 1.1-1.3 5-10% 
2 10-15% 10-20% 1.3-1.5 10-15% 
4 >15% >20% >1.5 >15% 

 

Table 3 Definition of the seven regions in Africa over which the RCCI is studied. 

Latitude Longitude  Region 

30 N - 38 N 10.5 W - 37.5 E  Southern Mediterranean SMED 

18 N – 30 N   19 W - 40.5 E Sahara SAH 

0 – 18 N 19 W  - 20.5 E Western Africa WAF 



0 – 18 N 20.5 E – 52.5 E Eastern Africa EAF 

8 S – 4 N  28.5 E – 43.5 E Equatorial Africa EQF 

26 S - 0 0.5 E – 55.5 E South Equatorial Africa SQF 

35 S – 26 S 9.5 E – 40.5 E Southern Africa SAF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 Values of ΔσT, RWAF, ΔσP, ΔP over the 7 regions in Africa. The corresponding value of n in equation (1) is 
shown in parentheses. 

Sub- 
Reg- Factors 2001- 

2020 
2021- 
2040 

2041- 
2060 

2061- 
2080 

2081- 
2100 

2001- 
2020 

2021- 
2040 

2041- 
2060 

2061- 
2080 

2081- 
2100 



ions MAMJJA SONDJF 

SMED 

ΔP(%) -0.75    
 (0) 

-5.91    
(1) 

-13.65 
(2) 

-20.43  
(4) 

-24.33  
 (4) 

-1.05  
(0) 

-5.37  
(1) 

-10.36  
(2) 

-16.03  
(4) 

-19.90 
  (4) 

ΔσP(%) 9.65    
(1) 

11.33 
 (2) 

16.22 
 (2) 
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Figure 1 Hotspots over Africa, for the period 2081-2100, A1B, A2 and B1 Scenario Ensemble 



 

Figure 2 (a.1) Contribution of ΔP in MAMJJA season. 



 

Figure 2 (a.2) Contribution of ΔP in SONDJF season. 



 

Figure 2 (b.1) Contribution of ΔσP in MAMJJA season. 



 

Figure 2 (b.2) Contribution of ΔσP in SONDJF season. 



 

Figure 2 (c.1) Contribution of RWAF in MAMJJA season. 



 

Figure 2 (c.2) Contribution of RWAF in SONDJF season. 



 

Figure 2 (d.1) Contribution of ΔσT in MAMJJA season. 



 

Figure 2 (d.2) Contribution of ΔσT in SONDJF season. 





 

Figure 3 Variation of the RCCI with the five 20-year periods of the 21st

 

 century 

for A1B, A2, B1 and scenario ensemble, for 7 regions in Africa. 

 

 

 

 


