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1. INTORUDCTION   

Oceanic whitecaps manifest the breaking of wind-
driven water waves with air entrainment.  They alter the 
ocean surface albedo and roughness and produce 
bubbles, sea spray and sea-spray aerosols.  Through 
these processes, breaking waves affect the remote 
sensing of surface wind vector (Yueh et al., 1999), 
salinity (Camps et al., 2005) and ocean color (Gordon 
and Wang, 1994) and are involved in the turbulent 
mixing of the upper-ocean layer (Melville, 1996), 
planetary heat budget (Fairall et al., 1994), air-sea gas 
exchange (Wanninkhof et al., 2009), tropical cyclone 
intensification (Andreas et al., 2008), and aerosol 
radiative forcing of climate (Lewis and Schwartz, 2004).  
Whitecap fraction, W, quantifies the area covered with 
whitecaps and is used as a forcing variable in models 
and parameterizations of these processes.  Traditional 
photographic measurements of foam fraction have high 
experimental uncertainty and are not sufficient to build a 
database necessary to investigate and model the 
geophysical variability of W.   

Within the framework of WindSat mission (Gaiser et 
al., 2004), Naval Research Laboratory has developed 
an alternative method of estimating whitecap fraction 
from satellite-based passive radiometric data 
(Anguelova et al., 2006).  The algorithm relies on 
changes of ocean surface emissivity at microwave 
frequencies (6 to 37 GHz) due to presence of sea foam 
on a rough sea surface.   

Here we describe the first extensive database of 
satellite-based whitecap fraction and additional 
meteorological and oceanographic data.  The database 
is used to investigate the geophysical variability of 
whitecaps with correlation and principal component 
analyses.   

2. WHITECAP DATABASE  

2.1 Satellite-based Whitecap Fraction  

Anguelova et al. (2009) list changes in the 
algorithm estimating W and the specific features of the 
satellite-based W values.  Briefly, the shortcomings of 
the feasibility-study algorithm (Anguelova and Webster, 
2006) were improved by usage of independent sources 
for the input variables of the algorithm, physically based 
models for the emissivity of rough sea surface and 
emissivity of foam, improved rain flag, and improved 

atmospheric model necessary for the atmospheric 
correction.  

Validation of the satellite-based whitecap fraction is 
not straightforward because of different principles of 
measurement used—optically for virtually all available in 
situ data and radiometrically for satellite-based data—
and the lack of sufficient and well-constrained in situ 
values representing wide range of conditions.  
Preliminary comparisons of satellite radiometric and 
ship-borne or aircraft-borne photographic values of W 
show general consistency (Anguelova et al., 2009).  But 
satellite-based W underestimate W predictions from 
current W(U) parameterizations at high winds and over 
estimate both W(U) parameterizations and the in situ 
data at low winds.  To evaluate the underestimation, 
more in situ data at high winds are necessary.  As for 
the overestimation at low winds, one must recognize 
that differences may not be due solely to the satellite-
based method because extraction of low (less than 
10-3%) whitecap coverage values from video records 
and photographs are expected to have large errors.  
Collection and comparison of satellite and in situ 
whitecap data for further comparison is ongoing.   

Though satellite-based whitecap observations need 
further development and improvement, the retrieved 
data are useful for gaining first insights about the 
variability of the whitecap fraction.  Thus, we compiled a 
whitecap database with the current version of the W 
estimates.  For the W entries, the whitecap database 
uses all available WindSat orbits (ascending passes) at 
swath resolution of 50×70 km2 for 10 GHz and 37 GHz, 
horizontal polarization (10H and 37H, respectively).  The 
choice of these frequencies is based on the conclusion 
of Anguelova et al (2009) that W from 10 GHz, similarly 
to the photographic W data, would capture all active and 
partially decaying whitecaps, while W from 37 GHz is 
good in “seeing” even the thinnest decaying foam 
patches.  The H polarization is used because it is more 
sensitive to changes of wind speed and breaking-wave 
events than the vertical polarization.   

Figure 1 presents daily global map of foam fraction 
from WindSat data for 1 March, 2007 (orbits 21479 to 
21492).  From the raw swath resolution, the whitecap 
fraction data are mapped globally into 0.5°×0.5° grid 
box.  Gridding statistics, including root-mean-square 
(rms) error, standard deviation and number of points 
counted, are associated with each grid box.   

Gaps in the daily W data are a notable feature in 
Figure 1.  These appear due to using data from 
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independent sources for W estimates (Anguelova et al, 
2006).  Matching data from various sources in time and 
space produces only 4 full orbits, those resulting from 
match-ups between WindSat and 6-hour analyses of 
Global Data Assimilation System (GDAS) developed at 
National Centers for Environmental Prediction (NCEP).  
The orbits with diamond-shaped chunks result from 
matching WindSat and QuikSCAT because the 
ascending passes of the two satellites are in opposite 
directions.  The gaps move from day to day and over a 
month global coverage is obtained with the caveat that 
the number of samples at a given point vary from 1 to 
23.  The gridding statistics saved in our database 
(Section 2.1) helps identify grid cells with limited 
sampling due to this issue.  As the algorithm for 
satellite-based whitecap fraction further develops, it is 
necessary to evaluate pros and cons of using 
independent data sources in it versus limited sampling 
resulting from such a choice.   

2.2 Additional Variables  

Six additional variables from other satellites or 
global models are matched-up in time and space with 
the satellite-based whitecap fraction.  These are wind 
speed, U10, from QuikSCAT or SSM/I depending on the 
chosen matching criterion; wind direction, φ, from 
QuikSCAT; SST, Ts, and air temperature, Ta, at 2 m 
reference height above the sea surface from 
GDAS/NCEP; and significant wave height (SWH), Hs, 
and mean wave period (MWP), Tp, from NOAA/NCEP 
WAVEWATCH III model (NWW3).   

These data are used to derive two additional 
variables.  The difference between the air and sea-
surface temperatures, sa TTT −=∆ , can be used as a 
proxy for the atmospheric stability (Kara et al, 2008).  
We calculate fetch using SWH and wind speed data 
following Lafon et al (2004) and the references there in, 

( )210UHgX s∝ .   

Figure 2 shows monthly (March 2006) maps 
(0.5°×0.5° grid) for Hs (panel a), ∆T (panel b), and X 
(panel c).  Figure 2b documents well the strongly 
unstable atmosphere (∆T<0) over the Kuroshio and 
Gulfstream currents, as well as the stable conditions 
(∆T>0) over the Southern ocean, at this time of the year 
and attests to the usefulness of the compiled database.   

The group of environmental variables x = [U10, Hs, 
∆T, Ts, X, Tp, φ] in this whitecap database represents 
four major influences on the whitecap fraction, namely, 
that of the wind speed, the wave field, the atmospheric 
stability, and the SST.   

The wave field is represented with four 
characteristics and this gives the possibility to 
investigate which of them is more effective in 
representing correlation to W.  SWH and MWP (Hs and 
Tp) can be obtained from models or direct observations.  
Fetch is not currently measured in any general way; 
instead reports of field campaigns sporadically 
estimates it if directional wave spectra are measured 

and analyzed.  Thus X is the most convenient way to 
evaluate the effect of the wave-field history on the 
whitecapping when direct measurements are not 
available.  It also offers the possibility to investigate the 
effectiveness of representing the influences of wind and 
wave fields on W separately, e.g., using U10 and Hs, 
versus combining them in one variable.  Finally, if one is 
to establish a general method for direct measurement of 
fetch, wind direction will most certainly figure 
prominently in such estimation.  On this basis we 
consider φ as a proxy for directly-measured, not 
calculated, fetch.   

2.3 Whitecap Database Features  

The whitecap database comprises daily 0.5°×0.5° 
maps (arrays) for 2006.  Time resolutions of 3-days, 
weekly (7-days) and monthly periods are also available.  
Statistics for whitecap fraction and the additional 
variables are also saved for each grid box.  Abbreviated 
database of whitecap fraction from 10H and 37H and 
only 3 additional variables (wind, wind direction, and 
SST) on 1°×1° grid, daily and monthly, is also archived.   

This is the first extensive whitecap database which 
features collocated, contemporaneous data for whitecap 
fraction and additional meteorological and 
oceanographic data covering wide range of conditions 
over full seasonal cycle.   

3. VARIABILITY ANALYSES   

Because satellite-based estimates of W contain 
information for, and are useful in representing, the 
whitecapping at specific environmental conditions, they 
are suitable for developing parameterizations of W as a 
function of as many additional factors as possible.  
However, while desirable, the development of such 
parameterizations may not be wise from modeling point 
of view; a modeler would prefer to use 
parameterizations with fewer variables to restrict the 
propagation of their measuring errors in the model.  
Thus, it is necessary to evaluate the relative contribution 
of each factor to the W variability and determine which 
of the additional factors are important in different 
regions over the globe.  We have pursued this using 
correlation and principal component analyses (CA and 
PCA, respectively).  In these analyses, we use the 
0.5°×0.5° gridded data for W and any other variable x in 
different combinations (details below).     

3.1 Correlation Analysis  

For each grid box we construct time series for each 
of the W-x pairs.  When monthly-averaged data are 
used, the time series formed for each grid box comprise 
up to 12 (but not less than 8) points.  If weekly or 3-days 
temporally-averaged data are used, the time series 
formed for each grid box have more points, respectively 
up to 43 or 109.  Here we report results for monthly time 
series.   

For each grid box and each W-x pair we find 
correlation coefficients, r, as a measure of the presence 
or strength of linear dependence between two variables.   
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If testing shows that the correlation between W and any 
variable x is statistically significant, we obtained 
coefficient of determination, r2.  Because r2 is a measure 
of the W variation explained by the factor x, choosing in 
each grid box the factor with the maximum r2 (after that 
of U10) gives us the relative importance of each of the 
considered additional factors to the whitecaps variability.  
When none of the additional factors shows a statistically 
significant correlation with the whitecap fraction, the 
variance of W was ascribed to the wind speed alone.  
Color-coding each variable x, we construct a map 
representing the contribution of each factor, besides the 
wind speed, to the variance of W.  The steps in this 
procedure follow, with some modifications, the work of 
Kara et al (2007).    

3.2 Principal Component Analysis 

With principal component analysis (PCA, 
Preisendorfer, 1988), we investigate the change in the 
variance explained by the first principal component (1st 
PC) obtained for data sets comprising W and each x 
(total of 7 data sets).  To make sure that the wind speed 
does not mask fully the variance explained by additional 
factors, we repeated the PCA for data sets combining 
W, U10, and one more variable, namely Hs, Ts, ∆T, and X 
(four data sets).  Finally, to evaluate which wave-field 
characteristic (Hs, Tp, X, or φ) is more effective in 
explaining the W variations, we performed PCA on data 
sets combining each of these wave-field factors with W 
and all other effects for which we have data, i.e., U10, Ts, 
and ∆T (another four data sets).  Prior to PCA, all data 
sets were standardized, i.e., they were modified to data 
sets with a mean of zero and variance of one 
(Preisendorfer, 1988, p. 22). 

The data used for PCA were daily values for one 
month.  We report results for March 2006 (section 4).  
To evaluate whether seasonal changes produce 
different results, we performed PCA on all same data 
sets described above for August and December 2006.  
Though the data sets used for CA and PCA differ (i.e., 
monthly for CA and daily data for PCA), the results of 
the two analyses complement each other and help 
reach broader conclusions (Section 4).   

4. RESULTS AND DISCUSSION 

With the wide range of conditions covered, the 
whitecap database is well suited to investigate the 
whitecap spatial and temporal variability (Sections 4.1) 
and its correlation to various environmental forcing 
factors (Sections 4.2 and 4.3).  CA and PCA were 
applied to W from 10H and 37H satellite observations, 
but only the results for W from 10H are shown and 
discussed here.  CA and PCA results for W from 37H 
lead to the same conclusions as those from 10H.   

4.1 Spatial and Temporal Whitecap Variations 

Figure 3 shows global monthly (March 2006) 
distribution of whitecap fraction from WindSat 
measurements at 10H (upper panel) and whitecap 
fraction obtained from W(U10) parameterization (lower 

panel) (Monahan and O’Muirchaertaigh, 1980).  The 
spatial distributions have similar features but somewhat 
different magnitudes.  The former is expected as 
satellite-based W values from 10H were found to be the 
closest to the photographically measured W values 
(Anguelova et al., 2009).  The later points toward more 
uniform distribution of whitecap coverage from low to 
high latitudes, a finding which, though not as strongly 
expressed as in the feasibility study (Anguelova and 
Webster, 2006), is preserved in the new W estimates 
and can be plausibly explained.  Partially, it could be a 
consequence of still developing and improving 
performance of the retrieval algorithm.  But it could also 
represent influences of the additional factors on the 
whitecapping.  For example, the high winds in the 
Southern ocean are coupled with mostly stable 
atmospheric conditions in this time of the year (e.g., 
Figure 2b), low SST which supports increased viscous 
dissipation, relatively strong Circumpolar current usually 
aligned with the Westerlies, and highly productive 
waters which supply higher concentrations of surface 
active materials.  All these additional factors act to 
suppress the whitecapping, thus the observed lower 
values for W as compared to those predicted by the 
wind-speed-only relationship.   

Figure 4 presents seasonal changes of the 
whitecap fraction for 2006 obtained from 37H.  Besides 
the shift of high W values from North to South 
Hemisphere during boreal and austral winters and 
springs, note the generally higher W values at 37H than 
those at 10H.  As noted before (Anguelova et al, 2009), 
this is a consequence of the different sensitivity of these 
two frequencies to different stages of the whitecap 
lifetime; 37H detects more foam than 10H because with 
its thinner skin depth it probes thin decaying patches of 
foam better than 10H does.   

4.2 Contributing Factors from CA 

The maps in Figure 5 exemplify the correlation 
between W and U10 (panel a), W and ∆T (panel b), and 
W and X (panel c).  The scale for the correlation 
coefficient in Figure 5a is from 0.8 to 1 clearly 
demonstrating the well known fact of strong positive 
correlation between wind and whitecap formation.  With 
a scale for r from -1 to +1, Figure 5b shows strong 
positive correlation (warm colors) between whitecap 
fraction and atmospheric stability at low latitudes and 
strong negative (cold colors) correlation between the 
two at high latitudes.  That is, annual stability conditions 
at lower latitudes act to increase the whitecap coverage, 
while the annual stability conditions at higher latitudes 
could decrease it.  In the well known bands of Westerly 
and Easterly winds, Figure 5c shows strong positive 
correlation between whitecaps and fetch in areas to 
which winds blow over long distances (long fetch 
causes high whitecapping) and in confined basins (e.g., 
Arabian sea and the Gulf of Mexico) where low 
whitecapping could be associated with short fetches.  
Close to large land masses (e.g., east of South America 
and South Africa), where fetches are still short; strong 
negative W-X correlation (i.e., short fetch and high 
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whitecapping) can be explained as a consequence of 
more frequent breaking of young seas which are 
undeveloped in areas with short fetches.   

The map in Figure 6, constructed with CA (Section 
3.1), shows which factor where on the globe contributes 
the most to the W variance besides the wind speed.  
Areas marked with green are places where no additional 
factor has shown statistically significant correlation with 
W and only wind is important.  While at lower latitudes 
these green places may be result of lack of physical 
influence of additional factors on W, the green places at 
high latitudes are most probably due to the sampling 
issue noted in Section 2.1.  Because we use at least 8 
points to construct the correlation maps (Section 3.1), 
there are grid cells where r is not obtained.  According 
to Figure 6, the significant wave height (purple areas) 
and the fetch (yellow areas) explain most of the spatial 
variability of W.  SST contributes mostly at low latitudes 
(red places).  Air-water temperature differences 
(magenta) are spread over different places but usually 
over areas where the atmospheric stability has strong 
seasonal cycle, e.g., high latitudes and over the 
Kuroshio and Gulfstream.  This map informs us that in 
developing new parameterizations of whitecap fraction 
we need to start with wind speed and wave field 
characteristics and account for the effects of SST and 
atmospheric stability only in some specific places.   

4.3 Contributing Factors from PCA 

Results of PCA (Section 3.2) are shown in Figure 7.  
Plotted in the figure are percent variances explained by 
the 1stPC for seven data sets combining W with each 
factor x (blue line).  After the wind speed, the 1stPC of 
the [W, Hs] data set explains most of the variance (82%), 
followed by about 67% variance explained by the 1stPCs 
of data sets [W, Ts] and [W, ∆T].  These are followed, in 
decreasing order, by the 1stPCs of the data sets 
involving φ, X, and Tp.   

The ranking of the percent variance explained by 
the 1stPCs associated with Hs, Ts, ∆T, and X when wind 
speed is also included in the data set is preserved 
despite slight changes in the absolute values (red 
symbols in Figure 7).  The PCA thus corroborates the 
result of the CA that the additional factor which 
influences the variations of the whitecap fraction the 
most is the wave field.   

Regarding SST and the atmospheric stability, two 
conclusions emerge from the PCA.  First, both SST and 
∆T have almost the same effect on the W variability.  
This is useful result because it suggests that we can 
choose either SST or ∆T to parameterize the variability 
due to any of them.  Because SST is routinely and more 
accurately measured than Ta (thus ∆T), the choice is 
obvious.  Since the data sets used for PCA are daily 
data for one month (i.e., relatively small temporal 
variations), most of the W variance which SST and ∆T 
explain is associated with their spatial variability from 
low to high latitudes.  The map in Figure 6 shows the 
regions where seawater and air temperature effects 
need to be considered.   

The second PCA result regarding SST and the 
atmospheric stability is that the variance they explain is 
higher than that explained by X (Figure 7).  This is in 
contrast to the results in Figure 6, where X emerges as 
the second most influential additional factor after Hs.  
The discrepancy could be due to the representation of 
monthly (in the case of PCA) versus annual (in the case 
of CA) temporal variations of the involved variables.  
Performing CA and constructing maps similar to that in 
Figure 6 on daily data for several months could give 
more insights.   

PCA applied to the four data sets involving [W, U10, 
Ts, ∆T] and each of the wave field characteristics (Hs, φ, 
X, and Tp) establishes Hs as the more efficient one 
because its 1stPC explains the highest variance 
compared to the variances explained by φ, X, and Tp 
(green symbols in Figure 7).  This is in agreement with 
the results in Figure 6 from CA.  PCA of these four data 
sets also suggests that if measured fetch (represented 
here by φ) is available, it might be more useful in 
representing the wave field effect on W variability than 
calculated fetch X.  Because presently no specific 
procedure exist to measure fetch and because various 
parameterizations exist to calculate X (Lafon et al., 
2004), the PCA of these four data sets points that the 
SWH is more suitable to account for wave field effect on 
W.   

The PCA results for August and December data 
produce slightly different values but these differences do 
not change the conclusions above.   

Overall, the results of both CA and PCA narrow 
down the useful additional factors which need to be 
considered in addition to wind speed to SWH and SST.   

5. CONCLUSIONS 

Further developments of an algorithm to estimate 
whitecap fraction from microwave passive observations 
have produced useful data.  With these an extensive 
database of whitecap fraction and additional variables 
has been compiled.  The database is suitable to 
investigate spatial and temporal variation of whitecap 
fraction over the globe.  Global spatial distribution of 
satellite-based values of W differ from those obtained 
with conventional W(U10) relationships.  The differences 
could be explained with the influence of additional 
meteorological and environmental factors on whitecap 
formation.   

Correlation analysis helps mapping the contribution 
of various additional factors to the W variance in various 
geographical regions.  Principal component analysis 
corroborates the results of the correlation analysis and 
helps narrow the range of additional factors necessary 
to parameterize W variability.  Besides wind speed, 
wave field—represented with significant wave height—
and SST are the factors that need to be considered 
when parameterizing whitecap fraction.    
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Figure 1  Foam fraction W (in %) from satellite 
data at 10 GHz, H pol.  Daily map for 1 March 
2007 (orbits 21479 to 21492), swath resolution.   
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Figure 3  Global monthly (March, 2006) 
distribution of whitecap coverage from 
WindSat measurements at 10 GHz, H pol. (10H, 
upper panel) and W(U10) model of Monahan 
and O’Muirchaertaigh (1980) (lower panel).   

a) 

 
b) 

 
c) 

 
Figure 2  Monthly (March 2006) maps (0.5°×0.5° 
grid) for significant wave height Hs (panel a) 
obtained from NOAA/NCEP wave model 
(NWW3), air-water temperature difference, ∆T 
(panel b), and fetch X (panel c).   
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b) 

 
c) 

 
Figure 5  Correlation maps for W and U10 
(panel a), W and ∆T (panel b), and W and X 
(panel c).  In (a) the color bar range is from 0.8 
to 1; in (b) and (c) the color bar range is from 
-1 to 1.   

a)  

 
b)  

 
 
c) 

 
d) 

 
 

Figure 4  Global seasonal distribution of 
whitecap coverage for 2006 from WindSat 
measurements at 37 GHz, H pol.  
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Figure 6  Contribution of various factors to the 
variance of whitecap fraction.  Green is for 
wind speed, yellow for fetch, red for SST, 
magenta for atmospheric stability, purple for 
significant wave height, and orange for mean 
wave period.   

 
Figure 7  Percent variances explained by the 
1stPC for data sets combining W with various 
factors x = [U10, Hs, Ts, ∆T, φ, X, Tp].     
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