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1.INTRODUCTION
The dropsize distribution (DSD) N(D) is

fundamental to the description the microphysics of
hydrometeors, especially with respect to remote
sensing applications. Traditionally, it is defined as the
quantity N(D)dD – the mean number of hydrometeor’s
particles with diameters between D and D+dD present
per unit volume of air. In this definition two different
concepts are mixed – the spatial distribution of drops
in a volume of air and the probability distribution of
their sizes. Usually, when the DSD is analyzed, the
hypotheses about spatial homogeneity and temporal
stationarity of cloud microphysical processes are
supposed to b valid, at least for analyzed scales. This
simplifying (and questionable, see Kostinski and
Jameson (2000)) assumption allows to concentrate
attention on statistical behavior of drop sizes.

It is not difficult to see (Maisel, (1971), p.20) that the
DSD has mathematical behavior similar to the
probability density function (PDF). There is only one
difference: the integral of a PDF equals 1, while that
for a DSD gives the particle number concentration.
This similarity means that it is possible to use powerful
and well-developed statistical methods for the
estimation of shape and parameters of the DSD. It
suggests to use for the parameterization of cloud
dropsize distribution, one of standard statistical PDF
with the parameters depending of cloud type and
surrounding meteorological conditions. Choosing an
analytical form of PDF among so many other ones
requires to take into account some of its peculiarities.
The main natural feature of the DSD is that it’s
bounded from below by zero value. From
experimental observations, it is also known that a
DSD usually has a positive asymmetry. Both of these
features also occur with gamma and log-normal
distributions. As a result, they are widely used in cloud
remote sensing researches and very often have been
considered to be equivalent. In present work we try to
estimate limits for which this equivalency is rightful.

2.THE MATHEMATICAL FORMULATIONS

We used the follow mathematical definitions: for
gamma DSD:
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where Γ(ν) - gamma function, ν and Dm,gam - shape
and scale parameters of gamma distribution. And for
log-normal DSD:
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where σlog and Dm,log - shape and scale parameters. In
both equations, N0 - total concentration of drops per
unit of volume. It is simple to show that the nth order
non-central moment for gamma-distribution can be
expressed in term of DSD parameters and first
moment (mean size of drops) as:
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and for log-normal distribution:
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It is clear that mathematically these distributions
and behavior of their moments are very different and it
is necessary to estimate the influence of this
difference when such distributions are used in remote
sensing applications.

The remote sensing instruments are able to
measure only integral parameters of drop size
distributions: mean size m1, effective radius re = m3/m2,
second moment m2 that is proportional to optical
extinction, 3rd moment m3 that is proportional to liquid
water content (LWC), and 6th moment m6 that is
proportional to radar reflectivity. The shape of the
DSD can be measured only with in-situ probes and
mathematically can be described using an unlimited
set of moments. When measured data is parametrized
with analytical approximations of DSD (like gamma or
log-normal PDF), only limited number of moments
(usually two with order up to 3) are used for estimation
of their shape and scale parameters. It is necessary to
check the equivalence of other moments for these
analytical approximations for different methods of their
parameters estimation.

3. COMPARISON OF MOMENTS FOR GAMMA AND
LOG-NORMAL DISTRIBUTIONS

3.1. The statistical approach for moments
estimation

The gamma-distribution parameters can be
estimated as follows:
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where m1 - first (the mean) and m2 - second moments.
If substituted in these expressions, the moments of
log-normal distribution, the result shows the relation
between parameters of log-normal and gamma
distributions:
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and the ratio of non-central statistical moments can be
expressed as:

])1(5.0[

)1()2(

)(
2
log

1,
log

2
log

σ
σ

σ

⋅⋅−⋅





 ⋅−+−

==
∏

=

nnexp

eii

m

m
R

n

i

logn,

gamn
n .

The analysis of this expression show that only for n
= 1 and n = 2 Rn = 1. The dependencies Rn(σ) for n =
3..6 are shown in Fig.1. It can be seen that equality of
first two moments of gamma and log-normal
distributions doesn't mean equivalence of any other
moments. Quite important for remote sensing
applications is the 6th moment (this moment is directly
proportional to radar reflectivity). The difference can
amount to 20 dB and more.

3.2. The estimation of DSD parameters using 1 st

and 3 rd moments
Miles et al., (2000) developed an another method

for estimation of parameters for gamma and log-
normal approximations of DSD. This method suggests
a priori knowledge of concentration, mean (or
effective) diameter of drops and liquid water content.
In our context it means the estimation of PDF
parameters using m1 and m3 moments. Using our
designations, equations for this method can be
rewritten: for gamma DSD
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where Q = m3 / m1
3. The ratio of non-central statistical

moments estimated using this method can be written:
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The dependencies Rn(σ) for n up to 6 are shown on
the Fig.2. It can be seen that R1 ≡ R3 ≡ 1, but for other
moments big variations of their ratios also take place.

3.3. Examination of real cloud data
Above was theoretically estimated, the non-

equivalence of gamma and log-normal distributions
from the viewpoint of difference between their high
order moments. For the examination of quantitative
importance of this effect for real DSD data, we
analyzed the gamma and log-normal approximations
of real DSD that was collected from different sources,
calculated and published in Miles et al. (2000). For
example, in Fig.3 is presented the histogram of the
ratio between reflectivities, calculated for gamma and
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Fig.1. The gamma-to-log-norm moments ratios as
functions of log-normal distribution shape
parameter. For estimation of the gamma distribution
parameters were used 1st and 2nd moments.
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Fig.2. The gamma-to-log-norm moments ratios as
functions of log-normal distribution shape
parameter. For estimation of the gamma distribution
parameters were used 1st and 3rd moments.
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Fig.3. The histogram of the ratio between reflectivities,
calculated for gamma and log-normal approximation
of continental stratocumulus DSD.



log-normal approximations of continental
stratocumulus DSD. It can be seen that using the
described approximations without checking the
equality of high moments, it is possible to have errors
in estimation of calculated reflectivity up to 10 dB.

4. THE APPLICABILITY OF ANALYTICAL
APPROXIMATIONS FOR REAL CLOUD DSD

Quite important for remote sensing application is
the question: which analytical distribution – gamma or
log-normal is better for approximation of cloud DSD.
We have shown that they are different, but which is
preferable to use for description of real data? We
have tried to answer this using water cloud in situ data
obtained during the CLARE’98 campaign (ESA,
1999). For calibrated and merged FSSP and 2-DC
spectrums, parameters of gamma and log-normal
approximations of DSD were estimated, using the
Miles et al., (2000) algorithm. For these
approximations,  the reflectivities Zgam and Zlog were
calculated. The results were presented on scatter
diagrams “Zgam versus ZDSD” and “Zlog versus ZDSD”
(Fig. 4 and 5). It can be seen, that for a reflectivity up
to –20 dBZ, gamma and log-normal distributions are
in good agreement with real data (gamma distribution
is a little better). For observed reflectivity more then –
20 dB both approximation do not have good
agreement with real data and very seriously
underestimate the reflectivity. This effect can be
explained as influence of drizzle particles that
increase drops concentration in the tail area of
distribution. Mathematically this effect can be
described with bimodal distributions. All measured
DSD that do not satisfy the criteria of distribution-
unimodality (Kendall, 1994)
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are present in this area (ZDSD > -20dB). Our
observations of the shape of the distributions show
that this criterion is not sufficient for the detection of
bi- or multi- modal distributions, but most of all

distributions with additional maximum(s) in the tail
area have reflectivity more than –20 dB.

5. CONCLUSIONS

The representations of the cloud dropsize
distributions by gamma and log-normal distributions
are not equivalent. Although these approximations
can have equal first moments, the 6th moment that
correspond with radar reflectivity, can show very big
differences (up to ± 10 dB). It is necessary to be very
careful with this approximations for DSD’s which have
reflectivity more than –20 dB. The shapes of such
distributions can statistically only be described using
complex representations with multi-parameters
distributions (like Pearson’s or Johnson’s) or mixture
of some distributions.
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Fig.4. The relation between cloud’s reflectivity, calculated
using in-situ DSD and it’s gamma approximation
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Fig.5. The relation between cloud’s reflectivity, calculated
using in-situ DSD and it’s log-normal approximation


