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1 INTRODUCTION

Precipitation forecasts have improved substan-
tially with introduction of operational limited—
area NWP models. However there is still need
for further improvement since not all mesoscale
details are represented well both in analysed
fields and model forecasts. There is also a known
problem of model “spin-up” effect (balancing of
the hydrological cycle) in the first few hours of
the forecast. Assimilation of precipitation data
is a way to deal with these problems.

Latent Heat Nudging (LHN) is an assim-
ilation method of forcing a NWP model to-
wards observed precipitation rates (Jones and
Macpherson, 1997). It compares latent heat re-
leased in the model to the latent heat released
by observed precipitation. NWP models typi-
cally compute precipitation rates in two ways:
explicitly, using a cloud microphysical parame-
terization (usually referred as “stratiform precip-
itation” ) and implicitly, using a sub-grid convec-
tive parameterization scheme (CPS). LHN does
not, distinguish between latent heat released by
both precipitation types. However in Eta Data
Assimilation System (Carr and Baldwin, 1991)
convective time scale is adjusted first and the re-
maining explicit temperature and moisture ten-
dencies are dealt with later.

Since weather radars are very successful in
establishing and locating precipitation systems
and not so successful in estimating precipitation
rates it seems to be a good idea to avoid the
use of Z-R relations and to try to use location
and size data only. This is important in the case
of convective systems, simulated with a CPS. In
that case crude assumptions normally have to be
made about size, location and lifetime of con-
vective cells. It is expected that diagnostic CPS
using radar derived information on location and
size of convective clouds would provide improved
precipitation amount and vertical distribution of

released latent heat.

2 KAIN-FRITSCH CPS IN
DIAGNOSTIC MODE

The Kain-Fritsch CPS (KF) uses one dimen-
sional entraining /detraining plume cloud model.
The cloud is represented by updraft and down-
draft mass fluxes. The air is allowed to entrain
from and detrain into environment (it depends
on buoyancy of air mixtures). The two most im-
portant assumptions are:

e Convective clouds are initiated in the grid
points where triggering criteria is fulfilled:

1/3

TLCL +cw > Tenv

where T, is temperature in the updraft
at lifted condensation level (LCL), w is
model vertical velocity, Te,, is environ-
ment temperature at LCL and ¢ is empir-
ical constant.

e The initial area of the updraft mass flux
is iteratively increased to the size that re-
moves convective available potential en-
ergy in prescribed convective time scale.

Both assumptions could be replaced by use of
radar data. A technique that separates convec-
tive cells from stratiform precipitation in radar
echo should be employed. The 40 dBz contour
of maximum reflectivity projection was chosen
to represent updraft mass flux area.

To demonstrate the potential of CPS in di-
agnostic mode three MM5 model runs were de-
signed:

e Explicit simulation of a single short-lived
convective cell in conditionally unstable
environment (1 km horizontal resolution,
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50x50 pts in each level, 29 vertical levels).
Convective cell was triggered with a warm
bubble. Simulated radar reflectivity in ma-
ture stage of the cell is plotted in figure 1.

e Implicit simulation of convection using KF
over the same domain with 10 km hori-
zontal resolution (5x5 pts in each level, 29
vertical levels). The bottom level was in a
gentle slope (therefore convection was trig-
gered in every grid point as a consequence
of slope induced vertical velocity).

e Diagnostic runs (same as implicit simu-
lation run except KF with radar derived
data in diagnostic mode). Two precipi-
tation efficiency values (0.9 and 0.7) were
used.

Figure 1: Top: vertical cross section of wind and
liquid water content in mature stage of simulated
storm (t=40 min). Bottom: Simulated radar reflec-
tivity at 10th model level (approx. 900 hPa). Thick
lines and dots denote the assumed updraft mass flux
area derived from simulated radar beams.

The total mass of precipitation of each model
run is plotted in figure 2. In the case of im-
plicit simulation 25 convective cells (one in each
grid point) are triggered at the beginning of the
model run. CPS is then locked for the period
of convective time scale which is set to 1 hour
whereas the diagnostic CPS is rerun each time
new (simulated) radar data is available. Note
that the implicit run total precipitation mass is
divided by 10 in the figure (“original”). Both
diagnostic runs follow the explicit simulation
(“true”) much closer.
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Figure 2: Total precipitation mass of various model
runs (see text).

3 CONCLUSIONS

The problem of convection parameterization in
the mesoscale is well known and discussed (Kuo
et al., 1997). Although no CPS clearly outper-
forms others, KF seems to be the most robust.
Since KF is based on a one dimensional plume
model it is possible to use it in diagnostic mode,
that is to replace certain assumptions in the orig-
inal scheme with radar-derived quantities. Fig-
ure 2 shows that using radar-derived triggering
and updraft mass flux initial area in the KF the
precipitation amount is much closer to explicit
simulation.

The method is simple and relatively cheap in
terms of computer CPU time. It has the power
to eliminate some known biases of CPSs (wrong
triggering timing and excessive spread of con-
vective activity). It also gives a possibility to
control mesoscale precipitation forecasts on-the-
fly. Z-R relations are completely avoided. The
method is expected to be more successful in cases
of wide spread air mass thunderstorms and other
forms of convection with weak interactions.
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