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1. INTRODUCTION

Sempere Torres et al. (1994) have recently
demonstrated that all previously proposed
parameterizations for the raindrop size distribution
(DSD) are special cases of a general formulation, which
takes the form of a scaling law. In this formulation, the
DSD depends both on the raindrop diameter (D) and on
the value of a so-called reference variable, in most
cases taken to be the rain rate (R). The generality of this
formulation stems from the fact that it is no longer
necessary to impose an a priori functional form for the
raindrop size distribution. Moreover, it naturally leads to
the ubiquitous power law relationships between rainfall
integral parameters, notably that between the radar
reflectivity factor (Z) and R.

Although the formulation has been successfully
verified experimentally on a number of occasions (e.g.
Sempere Torres et al., 1998), a clear physical
interpretation of its scaling exponents α and β and the
general DSD function g(x) has been lacking until now.
Our objective is to provide such an interpretation, to
present methods to apply the general formulation in a
meaningful way, and to give several examples of such
applications.

2. SCALING LAW FORMALISM

According to the scaling law formalism, raindrop size
distributions can be parameterized in terms of the
scaling law (Sempere Torres et al., 1994, 1998)
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where N(D,R) (mm-1 m-3) is the raindrop size distribution
as a function of the (equivalent spherical) raindrop
diameter D (mm) and the rain rate R (mm h-1), α and β
are (dimensionless) scaling exponents, and g(x) is the
general raindrop size distribution as a function of the
scaled raindrop diameter x = D / Rβ. In agreement with
common practice, R is used as the reference variable in
Eq. (1), although any other bulk rainfall variable could
serve as such (notably Z). According to this formulation,
the values of α and β and the form and dimensions of
g(x) depend on the choice of the reference variable, but
do not bear any functional dependence on its value.

The importance of the scaling law formalism for
radar meteorology stems from the fact that it allows an

interpretation of the coefficients of Z-R relationships in
terms of the values of the scaling exponents and the
shape of the general DSD. Substituting Eq. (1) into the
definition of Z in terms of the DSD leads to the power
law
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(Uijlenhoet, 1999). Hence, the physical interpretation of
the scaling exponents and the general DSD we are
looking for will directly lead to a physical interpretation of
the coefficients of power law Z-R relationships.

In a similar manner, the scaling law formalism leads
to power law relationships between any other pair of
rainfall integral parameters. In particular, substitution of
Eq. (1) into the definition of R in terms of the DSD
(assuming a power law relationship with coefficients c
and γ between the raindrop terminal fall speed v (m s-1)
and D) leads to the self-consistency constraints

c
dxxgx

π
γ

6

10
)(

4

0

3 =∫
∞

+
,              (5)

and
βγα )4(1 +−=              (6)

(Uijlenhoet, 1999). Hence, g(x) must satisfy an integral
equation (which reduces its degrees of freedom by one)
and there is only one free scaling exponent. For the
applied units, Atlas and Ulbrich (1977) proposed the
widely used values c = 3.778 and γ = 0.67. Substitution
of the latter into Eqs. (4) and (6) leads to b = 1 + 2.33β.

3. EXAMPLE: LAWS AND PARSONS' DATA

Uijlenhoet (1999) proposes various methodologies to
estimate self-consistent values of the scaling exponents.
It follows from Eq. (1) that, once α and β are known, g(x)
can be identified graphically by plotting N(D,R)/Rα vs.
D/Rβ. With the aim of bridging the gap between the
scaling law formalism and more traditional approaches



for analyzing empirical DSDs (e.g. Smith, 1993),
Uijlenhoet (1999) also presents a method to adjust self-
consistent analytical parameterizations to the empirical
g(x).

Figure 1a,b provides two representations of the
widely used family of mean DSDs presented by Laws
and Parsons (1943) for different values of R. Figure
2a,b provides the corresponding empirical g(x) and two
analytical parameterizations (exponential and gamma).
The estimated values of the scaling exponents are α =
0.178 and β = 0.176. The corresponding Z-R
coefficients, derived from Eqs. (3) and (4), are a = 351
(exponential fit) or a = 326 (gamma fit), both with b =
1.41, close to the standard NEXRAD Z-R relationship (Z
= 300R1.4).

Note that the effect of the scaling methodology is to
collapse the eight different mean DSDs onto one single
empirical g(x). As such, all dependence of the DSDs on
R (or any other rainfall integral parameter) is filtered out
by this approach. Apparently, all effects of the spatio-
temporal variability of rainfall integral parameters are
entirely contained in the values of the scaling
exponents.

4. INTERPRETATION OF THE SCALING LAW

Using a statistical formulation of the scaling law,
Uijlenhoet (1999) shows that the scaling exponents can
be expressed in terms of the variances of and the
covariances between the parameters of the DSD. He
finds that the values of these scaling exponents
determine to what extent it is the fluctuations of the
raindrop concentration (or the arrival rate) or the
fluctuations of the characteristic raindrop size (or some
combination thereof) which control the spatial and
temporal variability of the DSD.

Figure 3a,b provides two graphical representations
of the self-consistency constraint (Eq. (6)) for three
values of γ reported in the literature (dashed line: 0.8;
dash-dotted line: the previously mentioned 0.67; dotted
line: 0.5). The cross at the point with coordinates (α,β) =
(-0.27,0.27) corresponds to a situation of purely raindrop
size-controlled rainfall, the plus at the point with
coordinates (α,β) = (0,0.21) to Marshall and Palmer's
(1948) exponential raindrop size distribution, and the
circle at the point with coordinates (α,β) = (1,0) to purely
raindrop concentration-controlled conditions. This figure
shows that Laws and Parsons' (1943) data, for which
(α,β) = (0.178,0.176), must originate from more
concentration-controlled conditions than Marshall and
Palmer's (1948) data. Uijlenhoet (1999) argues that pure
size-control may occur during orographic conditions,
pure number-control during equilibrium conditions, and
different combinations of size-control and number-
control during stratiform and convective conditions (with
the former predominantly size-controlled and the latter
predominantly number-controlled).

The interpretation of g(x) proposed by Uijlenhoet
(1999) is straightforward. If R is chosen to be the
reference variable, the general DSD simply represents
an equivalent distribution for a rain rate of 1 mm h-1. It
remains a challenge, however, to establish connections

between the shape of g(x) and the (micro)physical
processes producing precipitation.

5. EXAMPLE: ISWS RAINDROP CAMERA DATA

Uijlenhoet et al. (2001) present a preliminary study
towards relating the type of precipitation to the values of
the scaling exponents and the shape of the general
DSD. Their particular focus is the behavior of DSDs in
extreme rainfall, an issue of considerable practical
interest. Figure 4 presents the results of a global
analysis of a year's worth of one-minute DSDs for
Miami, Florida, a location for which the maximum DSD-
derived rain rate exceeds 700 mm h-1. A scaling
analysis similar to that presented for Laws and Parsons'
data (Section 3) has been applied to all spectra with rain
rates exceeding 1, 10 and 100 mm h-1, respectively.

As the rain rate threshold increases from 1 (or 10)
to 100 mm h-1, the value of the scaling exponent β
decreases roughly from 0.1 to 0 (Figs. 4a,c,e). This
indicates a change from a combination of size and
number-controlled variability to a situation where the
rainfall variability is purely number-controlled. In this
situation all moments of the raindrop size distribution
are approximately proportional to each other (Fig. 4e).

The shape of the general raindrop size distribution
reflects a similar behavior (Figs. 4b,d,f). It also changes
markedly while increasing the threshold from 1 (or 10) to
100 mm h-1. Moreover, Fig. 4f seems to display a
tendency toward multiple-peak behavior, consistent with
the equilibrium hypothesis (e.g. List, 1988), although
instrumental artifacts cannot be ruled out at this point.

6. SUMMARY

Our interpretation of the scaling law formulation is an
attempt to establish a connection between the observed
variability of the shape of DSDs at the ground and the
microphysical processes aloft that shape them. We try
to relate, in a systematic way, the values of the
coefficients of the power laws used in radar meteorology
to the type of rainfall (orographic, stratiform, convective,
equilibrium) and the climatic setting.
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Figure 1. Drop size spectra for R = 0.254,
1.27, 2.54, 12.7, 25.4, 50.8, 101.6, and
152.4 mm h-1 (Laws and Parsons, 1943).

Figure 2. Exponential and gamma fits to
general raindrop size distribution g(x)
corresponding to Fig. 1 (Uijlenhoet, 1999).

Figure 3. Statistical interpretation of self-
consistency relationship (Eq. (6)) between
scaling exponents α and β (Uijlenhoet, 1999).

Figure 4. Global scaling analysis of Miami drop
camera data for rain rate thresholds of 1, 10 and
100 mm h-1 (Uijlenhoet et al., 2001).


