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1. INTRODUCTION

Fluctuations in disdrometer measurements of raindrop
size distributions (DSDs) and derived rainfall properties
are due 'both to statistical sampling errors and to real
fine-scale physical variations which are not readily
separable from the statistical ones' (Gertzman and
Atlas, 1977). The terminology adopted here for these
two types of fluctuations is "sampling fluctuations" and
"natural variability", respectively.

It would be of great practical importance to be able
to distinguish between both sources of variability. This is
because the parameters of DSDs and the coefficients of
Z-R relationships should represent the properties of the
type of rainfall to which they pertain as much as
possible and the properties of the raindrop sampling
device from which they are derived as little as possible.

It is therefore necessary to investigate to what
extent rainfall fluctuations observed with different types
of instruments reflect the properties of the rainfall
process itself and to what extent they are merely
instrumental artifacts.

2. METHODOLOGY

We use a statistical model of the microstructure of
rainfall to derive explicit expressions for the magnitude
of the sampling fluctuations in rainfall properties derived
from DSD measurements. The model is a so-called
marked point process (e.g. Smith, 1993), where the
points represent the drop centers and the marks their
sizes (Fig. 1).

The simplest situation obviously is the case where
only sampling fluctuations are present and no natural
variability. As rare as this situation may be in practice, it
is of more than merely academic interest. It provides a
lower bound to the magnitude of the variability in a
practical situation, where sampling fluctuations and
natural variability exist side-by-side.

3. POISSON OR FRACTAL STATISTICS?

In the absence of natural variability, it is plausible to
assume that (1) raindrops are uniformly distributed in
space and (2) raindrop sizes are independent of each
other and of the positions of the drops in space. This
implies that the arrival process of drops at the
disdrometer is a so-called homogeneous Poisson
process and that the numbers of drops arriving at non-
overlapping time intervals have independent Poisson
distributions (e.g. Joss and Waldvogel, 1969).  Figure 2

provides empirical evidence for the Poisson hypothesis
in a stationary rainfall event, characterized by 35
minutes of uncorrelated fluctuations around a constant
mean rain rate of 3.5 mm h-1 (Uijlenhoet, 1999).

As an alternative to the Poisson hypothesis and its
extensions (e.g. Kostinski and Jameson, 1997), Lovejoy
and Schertzer (1990) provide empirical evidence for a
fractal description of rainfall. However, we show
analytically that the fractal correlation dimension they
obtain from a box-counting analysis of the spatial
distribution of raindrop stains on blotting paper can be
explained entirely as a boundary effect (Figs. 3 and 4).
Hence, their test results are not significant enough to
reject the Poisson hypothesis.

4. RESULTING SAMPLING DISTRIBUTIONS

Within the framework of the Poisson hypothesis, we
show analytically that (and how) the sampling
distribution of the estimator of any rainfall integral
variable converges to a Gaussian distribution. Figures 5
and 6 show such sampling distributions for rain rate and
for the maximum raindrop diameter. In addition to being
useful in their own right, these results provide a
theoretical confirmation and explanation of the
simulation results of Smith et al. (1993).

5. OUTLOOK: TIME AND SPACE

We propose two extensions of the homogeneous
Poisson process model of sampling fluctuations: (1)
inclusion of natural variability (Fig. 7); (2) inclusion of
spatial dimensions (Fig. 8). The latter is particularly
important with regard to extending the classical theory
of weather radar to include density fluctuations.
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(c) sequence of rainfall volumes
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Figure 1. Three representations of the small-
scale, discrete, stochastic temporal structure of
rainfall at a surface: as a marked point process (a,
b) and as a sequence of rainfall volumes (c).

Figure 2. Empirical (crosses) and theoretical
Poisson (circles) frequency functions of raindrop
counts in 10-s intervals for 35 min of observations
with 50-cm2 optical disdrometer (Uijlenhoet,1999).

Figure 3. Schematic representation of raindrop stain on
blotting paper (top) and expected surface area of circle
falling inside blotting paper (bottom), without (dashed
line) and with (solid line) correction for boundary effects.

Figure 4. Expected proportion of circle falling inside
blotting paper (top) and apparent fractal correlation
dimension of uniformly distributed drops (bottom),
for different values of minimum normalized radius.
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Figure 5. Sampling distributions of rain rate for
50-cm2 disdrometer for different mean rain rates
(0.1, 1, and 10 mm h-1) and integration times
(solid: 0.1 s; dashed: 1 s; dash-dotted: 10 s).

Figure 6. Sampling distributions of maximum drop
diameter for 50-cm2 disdrometer for different rain
rates (0.1, 1, and 10 mm h-1) and integration times
(solid: 0.1 s; dashed: 1 s; dash-dotted: 10 s).

Figure 7. Three realizations of raindrop arrival
process modeled as a doubly-stochastic Poisson
process, including both natural variability (bold
lines) and sampling fluctuations (thin lines).

Figure 8. Simulation of temporal evolution of rainfall
integral variables in 1-m3 sample volume in
statistically homogeneous rainfall (Uijlenhoet, 1999):
number of drops (a); rain rate (b); reflectivity (c).


