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1. INTRODUCTION

It is only recently that full polarimetric covari-
ance matrix measurement capability has been imple-
mented on research weather radars, in particular on
the CSU-CHILL (Brunkow et al. 2000) radar which
is the focus of this paper. A two-transmitter/two re-
ceiver system is used on the CSU-CHILL to measure
the three real and three complex correlation terms
of the covariance matrix in the H/V basis. The co-
variance matrix must be calibrated, in particular,
for the differential gain and phase offsets between
the two receivers; details of these and related cali-
bration and polarization error issues may be found
in Hubbert and Bringi (2001).

While it is known that raindrops form a highly
oriented medium (Beard and Jameson 1983), rain
models used in polarimetric rain rate algorithms of-
ten assume that the mean canting angle is 0° with
standard deviation in the range 0 — 10°. While the
mean canting angle is expected to be very close to
0°, the standard deviation could vary with drop size,
turbulence, etc. For example, the Ky, in the pres-
ence of a canting angle distribution with o is easily
related to the Ky, for an equi-oriented medium as
(Bringi and Chandrasekar, 2001),

de = (de)oemp(_2a-g) (1)

where (Kgp), is the specific differential phase for the
equi-oriented case. Similarly at long-wavelengths,
the LDR is dependent on ¢3 via (Bringi and Chan-
drasekar, 2001),

L~ % [1—exp(—803)] [(1 —72)* +var(rz)] (2)

where L is the linear depolarization ratio (in linear
scale), 7z is the reflectivity-weighted mean axis ra-
tio and wvar(rz) is the variance of axis ratios. It is
clear from (2) that LDR is a product of both ”ori-
entation” effects as well as ”shape” effects and sep-
aration of the two is not possible using LDR data
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alone. In addition, if there is a mean canting angle,
then the expression for LD R is more complicated as
compared with (2).

With recent measurement of the full covariance
matrix, it is now possible to use the theory of opti-
mal polarizations for estimating separately the mean
and variance of the canting angle distributions with-
out the complication produced by ”shape”effects. In
addition, once the covariance matrix is measured in
the H/V basis, it can be transformed to other bases
(e.g. circular). While direct measurement in the cir-
cular basis has some advantages, the estimation of
the mean and variance of the canting angle was only
previously accomplished by the ”slow” method of
rotating the linear polarization basis (Hendry et al.
1987). The method use here is based on the theoreti-
cal formulation of Tragl et al. (1991) in combination
with the ideas of Hendry et al. (1987). The covari-
ance matrix in the H/V-basis (X,) can be trans-
formed to any orthogonal basis by using the unitary
transformation matrix T as,

(p) = T(p)Zo T (p) 3)

where p is the complex polarization ratio. The trans-
formed matrix X(p) can be expressed as,

P2(p) V2RZ(p)  Reol(p)
3(p) = - 2P,(p) V2RE(p) | (4)
- - P5(p)

The real elements PA and P2 along the diagonal
are the copolar backscattered powers while P, is
the cross-polar power (e.g. if p corresponds to hor-
izontal polarization, then P£ = Pup, P£ = P,
and P, = P, or P,;). Also, the three com-
plex covariances would correspond to RY = Rhh,on,
Reo = Rhpwo and RB = Ry, 4y The optimal cross-
polar power states (i.e., the transmitted polarization
state p that results in a minimum in the cross-polar

return power) is given by the condition,

6Pm(p) _ 1 * —
e (1+pp*){[RzB(P)] —-R;(p)}=0 (5)




While the above may be solved using standard nu-
merical methods, Tragl et al. (1991) have developed
an elegant formulation which reduces the solution of
(5) to a known extremization problem involving real
linear algebra. In brief, the cross-polar power func-
tion, P,(p) in (4), can be expressed as (in mixed
vector /matrix notation),

Po=_tt-A,-7; #t-7=1 (6)

N[ =

where the matrix A, is obtained as,

A, =Qx.Q" (7)

with Q a known unitary matrix. The solutions ¢
which extremize the quadratic form in (6) are given

by,
Re[A,] -7 = \0 (8)

with A the eigenvalues of the matrix Re[Ao]. It can
be shown that there exists three solutions that ex-
tremize the cross-polar power function which may be
analytically determined once X, in the (H/V)-basis
is known (i.e., via measurements). The three solu-
tions correspond to a maximum, a minimum and a
saddle point of P.;. The tilt angle of the minimum
solution is taken as the mean orientation angle of
the medium (). Once § is known, the 3, matrix is
transformed using (3) to a linear polarization-basis
whose tilt angle is 45° away from it. The differ-
ence in LDR’s in these two bases (i.e., the optimal
basis and the one 45° away) is known to be a func-
tion of the variance in canting angle only (Hendry
et al. 1987) and independent of any ”shape” ef-
fects. Hubbert and Bringi (1996) show, via simula-
tions of raindrop size distributions, that this LDR
difference (comparable to the difference in maximum
cross polar power to minimum cross polar power in
the rotating linear basis data of Hendry et al. 1987)
is directly related to the standard deviation (op)
and nearly independent of the axis ratio distribu-
tion. Their model results are used to infer oy from
the computed LDR difference.

2. DATA ANALYSIS

The data reported herein were collected with the
CSU-CHILL radar during STEPS (Severe Thunder-
storm Electrification and Precipitation Study) con-
ducted in eastern Colorado during the summer of
2000. Covariance matrix data were available at each
resolution volume during a heavy rain event on 11
June 2001. Fig. 1 shows Z, and Zg, versus height
(agl) through the core of the storm cell using RHI

scan data. Fig. 2 shows corresponding vertical pro-
files of the mean canting angle (8) and the co-to-
cross correlation coefficient (ppp,on). Below 2 km,
the 3 is very close to 0° while from 2-6 km it in-
creases from 0° to around 6° on average. This in-
crease appears correlated with a small increase in
Phhwh- It is known that ppp .p is related to sin(20)
as a first approximation (see exact relation in Bringi
and Hubbert 2001), and thus the inferred increase
in 4 may be a result of the increase in Phh,wh With
height. Fig. 3 shows o3 and Ky, with height. Be-
low 2.5 km (agl) the Ky, increases nearly linearly
with decreasing height in the rain layer below the
melting level. Also, og decreases from 25° (near the
melting level) to 10° near the surface indicating the
increasing stability of the raindrop’s orientation as
the ice particles melt to form oblate, oriented rain-
drops. Fig. 4 shows a histogram of § from PPI
scans through the core of the storm cell at low el-
evation angles (well below the melting level and in
the rain layer). The mode is close to 0.5° with ex-
tremes of the histogram less than 8° in magnitude.
We believe that the mode of 3 at 0.5° is most prob-
ably related to a system offset, i.e., the transmitted
H/V basis is rotated by 0.5° (see Hubbert and Bringi
2001). The histogram of o is shown in Fig. 5 with
mode near 10°, generally validating the assumption
used in several rain models for deriving polarimet-
ric rain rate algorithms. Finally Fig. 6 shows og
versus Zg, as a scatterplot (each data point is from
one range resolution volume). The decrease of og
with Zj,. can be related to the increased stability
of large raindrops versus small ones; large raindrops
are formed by melting of large ice particles and the
presence of a melting ice core tends to stabilize the
orientation of the particle. We believe these are the
first data to show the decrease of og with increas-
ing Zg, in convective rain, and such a behavior may
need to be included in rain models used for deriving
polarimetric-based rain rate algorithms.
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Figure 1: Vertical profile of Z; and Z;.
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Figure 2: Vertical profile of 5 and pph.on
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Figure 3: Vertical profile of og and Kyg,.
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Figure 6: Scatterplot of og vs. Zg,.
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