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ESTIMATION OF POLARIZATION ERRORS FROM COVARIANCE MATRICES

OF CSU-CHILL RADAR DATA

J.C. Hubbert; V.N. Bringi

1. INTRODUCTION

The covariance matrix of weather targets can be
measured by the CSU-CHILL radar which alter-
nately transmits pulses of H (horizontal) and V (ver-
tical) polarized energy and receives simultaneously
both H and V polarized signals. The covariance ma-
trix is a function of not only the scattering process
but is also contaminated by polarization errors of the
radar. If the covariance matrices are well calibrated
it is possible to estimate these polarization errors
from data. The expected value of the polarization
errors is quite small and thus the copolar measurends
will be negligibly affected. However, the crosspolar
measurands can be greatly affected even by polar-
ization errors of a few tenths of a degree (Hubbert
et al., 1999). Thus knowledge of polarization errors
is important to the interpretation of radar variables
such as LDR (liner depolarization ratio) and ppp,uh,
the co-to-cross correlation coefficient.

Polarization errors have been covered in detail by
McCormick (1981). That treatment was analytical
and applied primarily to circular polarization basis
radar. Here the polarization errors are integrated
and represented by a single error term for each chan-
nel. The polarization errors are easily included in
the scattering model of Hubbert et al. (1999) by
pre- and post- multiplying S’ by the error matrix T

S.=YTs'r (1)
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with constraints i + |ep|* = i2 + |&,|> = 1 and ip, 4,
being real. The polarization errors of the H and V
channels are represented by 5, and ¢,, respectively.
The polarization errors can also be equivalently rep-
resented with the geometric ellipse parameters of tilt
angle, 7 and ellipticity angle, e. These variables are

related by
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where x is the polarization ratio. For H errors
X = en/ip and for V errors x = i,/e,. As can be
seen from the equations, if the €5, (g,) is real then €
is zero and if &, (&,) is imaginary then 7 is zero. If the
errors are orthogonal, i.e., &, = —¢}, then T is uni-
tary and Eq.(1) represents an orthogonal change of
polarization basis transformation. However, in gen-
eral polarization errors will not be orthogonal. Sep-
arating the polarization errors into their geometric
components gives a convenient and intuitive way to
analyze polarization errors.
The covariance matrix has the form,

PA(x)  V2R}x)  Reo(x)
2(x) = | V2R2*(x) 2P:(x) V2RB(x) | (4)
R:(x)  V2RE*(x) PE(x)

The real elements P (x) and PB(x) along the diag-
onal are the copolar backscattered powers while P,
is the crosspolar power (eg. if x corresponds to H po-
larization, then PA = Py;,, P2 = P,, and P, = P,
or Py,). Also the three complex covariances would
correspond to Reo = Rup vy RA = Rpppn and R =
Rpy,vv. Disregarding absolute power and phase, to
construct a covariance matrix from data, two relative
powers and two relative phases need to be calibrated.
The relative powers calibrate Zg, = 101log(Prp/Pyy)
and LDR = 10log(Pyn/Prr). The LDR can be
calibrated precisely with sun pointing data (termed
suncal) that is routinely gathered by the radar. To
calibrate Zg, a scatter diagram of P, versus Py, is
constructed. By reciprocity these powers should be
equal and any observed offset can be attributed dif-
ferential gain bias (termed xpow_bias) of the radar
system. It is then easily shown that Zj pi0s =
2suncal —zpow_bias (in dB scale). The system phase
offset for ¥4, = arg{R},} is easily found by plotting
ray profiles of ¥4, and determining the phase that
makes ¥y, begin at zero degrees. The co-to-cross
phases, Uy o = arg{ R4} and ¥, », = arg{ RP*},
are much less understood. Since the correlation co-
efficient pppon = |RA|/(PAP,)%5 is typically quite
small (< 0.5 for most precipitation), the standard
deviation of the Upp p (and U,y py) is very high,
typically in the tens of degrees. These phases are



also complicated functions of not only the mean cant-
ing angles of the backscatter medium («) and prop-
agation medium (#) but also Zz. and LDR. Next
the scattering model as described in Hubbert et al.
(1999) is used to examine the co-to-cross phases.

Fig. 1 shows the phases U, = Uphont+¥ap/2 and
li/m, = Wy, o — Vap/2 as a function of principal plane
U ,, with the ratio o/f as a parameter. The model
shows two important behaviors: 1) \i!m and \i!wh are
nearly identical (some slight variations of < 3° exists
that are not shown in the plot) and 2) for positive
(negative) 0, ¥,, and ¥,, are positive (negative).
To find the system offset phases for these phases the
fact that Wyy hy — Yhi,wn = Yap is employed. For the
CSU-CHILL system it can be shown that the system
offset phases for W, p, and Wpp ,p are equal but
opposite in sign. This common offset can be adjusted
until range profiles of Wy, py — ¥hpon match ¥g,.
This then completes the calibration of the covariance
matrix.

To estimate polarization errors it is assumed the
mean canting angle of the propagation medium will
on average be zero. The individual backscatter res-
olution volumes may, however, have non-zero mean
canting angles. It is known that if precipitation par-
ticles have a mean canting angle of zero and if they
are symmetrically distributed around zero degrees,
then theoretically R2 = RE = 0 when operating in
the H/V polarization basis. In practice these num-
bers are relatively small so that ppp,yn and pyy, e are
typically on the order of 0.1 to 0.2 for a rain medium.
Since the polarization errors can be non-orthogonal,
finding the tilt angle in the eigenpolarization basis
will not reveal the true error terms. Thus the errors
are determined by finding vaues of the error terms,
Th, €h, Ty, €y, that minimize ppp op and this is done
via a simple search method.

The polarization error estimation method is as fol-
lows. A range profile(s) of data is selected where
there is significant increase in ¥4, which will accen-
tuate the errors. For example, if significant tilt er-
ror is present (a few tenths of a degree is sufficient)
then in general ppp op will increase significantly with
increasing ¥q4,. Calibrated covariance matrices are
constructed at each sample point (0.15km in the fol-
lowing case). For all the covariance matrices, error
terms 7, Ty, €h, €y, are varied and the minimum of
the sum

Q= ZPhh,uh(i)(Th, Tys €hs€p) (5)
=1

is found. The resulting tilt and ellipticity angles are
considered polarization errors.

1. DATA ANALYSIS

Shown in Figs. 2-5 is a ray of data gathered during
STEPS (Severe Thunderstorm Electrification and
Precipitation Study) on 21 July 2000 through a
heavy rain cell with reflectivities of 40 dBZ to 60 dBZ.
Fig. 2 shows ¥4, increasing 100° over 50km and a
filtered version of W, py, — ¥php,p Which mimics ¥g,
very well as expected. Fig. 3 shows a range profile of
W, .. If the mean propagation canting angle is zero
then this phase should be 0° or 180° depending on
the mean canting angle of the backscatter resolution
volume. Since this phase is nearly always positive we
surmise from Fig. 1 that # must be positive. Thus
if the actual mean canting angle of the propagation
medium is zero, the polarization tilt error is likely
to be positive. Fig. 3 is not a single ray anomaly
but rather is seen in nearly all range profiles of CSU-
CHILL data gathered during STEPS that possess
significant amounts of increasing ¥4,. With 150m
gate sampling this allows for the construction of 333
covariance matrices which are used in the minimiza-
tion procedure. The resulting polarization errors are
7 = 0.5°, €5, = 0.1°, 7, = 90.5°, ¢, = —0.4°. Using
these error terms a 3X3 transformation matrix can
be constructed and the polarization errors can be re-
moved from the data by pre and post multiplying the
measured covariance matrices by this matrix (Huang
et al., 2001). Range profiles of the corrected data
can then be made. Fig. 4 shows filtered ppp,on and
corrected ppp,op and as expected, corrected ppp,yn is
significantly reduced to an average level that is con-
sistant with rain. Similarly, Fig. 5 shows filtered
LDR and corrected LDR. Again the the corrected
LDR is reduced as it should be with the polarization
errors removed.
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Figure 1: U, or U,y as a function of principal plane
W4, with the ratio of mean backscatter to mean prop-
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agation canting angle as a parameter.
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Figure 5: Range profile of filtered LDR
tion error corrected LDR.
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