
MM5 ADJOINT DEVELOPMENT USING TAMC: EXPERIENCES WITH AN
AUTOMATIC CODE GENERATOR

Thomas Nehrkorn*, George D. Modica, Mark Cerniglia

Atmospheric and Environmental Research, Inc. Lexington, MA

Frank H. Ruggiero

Space Vehicles Directorate, Air Force Research Laboratory, Hanscom Air Force Base, MA

John G. Michalakes

Argonne National Laboratory, Boulder, CO

Xiaolei Zou

Department of Meteorology, Florida State University, Tallahassee, FL

* Corresponding author address: Thomas

Nehrkorn, AER Inc., 131 Hartwell Ave., Lexington,
MA, 02421-3126; email: trn@aer.com

1. BACKGROUND

The four-dimensional variational (4DVAR)
approach has been shown to provide benefits and
advantages to NWP when compared with other
methods of data assimilation. However, the
computational demands of this approach far
exceed the computer capacity available at a
typical weather forecast center. As part of a
project described in a companion paper at this
conference (Ruggiero et al. 2001), we are
developing a highly scalable version of the MM5
adjoint modeling system to allow its efficient
execution on parallel distributed memory (DM)
machines. To take advantage of the existing
parallelization mechanisms (Michalakes, 2000)
already in place for the latest release (Version
3.4) of the MM5 nonlinear model (NLM), the
existing (Version 1, Zou et al. 1998) tangent linear
(TLM) and adjoint model (ADJ) codes are also
being updated to Version 3.4. In order to facilitate
the code generation of the TLM and ADJ, we
utilize the Tangent Linear and Adjoint Model
Compiler. In Section 2 we describe the TAMC, its
capabilities, and the procedure we followed to
generate TLM and ADJ code. This is followed in
Section 3 by a description of the tests used to
check for the correctness of the TLM and ADJ.

Finally, we present some details of our code
development methodology in Section 4.

2. THE TANGENT LINEAR AND ADJOINT
MODEL COMPILER (TAMC)

TAMC is a source-to-source translator that
generates Fortran code for the TLM or ADJ from
the Fortran code of the nonlinear model (NLM).
The NLM source code must conform to the
Fortran-77 standard, with some additional
restrictions (some features of the Fortran-90
standard are also supported). TAMC was
developed and tested by Giering and Kaminski
(1998), and it has been used in oceanographic
and other modeling applications (e.g., Kaminski et
al. 1996). The NLM derivatives are computed in
the reverse mode (to create the ADJ) or in the
forward mode (TLM). TAMC normalizes the
source code and applies a control flow analysis.
TAMC also applies an intraprocedural data
dependence and an interprocedural data flow
analysis. Given the independent and dependent
variables of the specified top-level routine, TAMC
determines all active routines and variables and
produces derivative code only for those.

It would be possible to incorporate the TAMC
as part of the NLM compilation process, requiring
the maintenance of just the NLM code. This
requires, however, that the NLM code be modified

P 6.18

as needed to result in generation of correct TLM
and adjoint code by TAMC. For this project, we
have found that amount of code modification to be
prohibitive. For the development of the MM5
adjoint, we have chosen instead to use TAMC as
a development tool only, and separately maintain
the TLM and adjoint versions of the model code.
This approach makes it possible to minimize
changes to the MM5 code as supported by NCAR,
but it requires a mixture of manual and automatic
code generation. Compared to manual coding
only, this method substantially reduces the time
for coding and error debugging.

3. CODE GENERATION AND TESTING

As part of the TLM and adjoint model
development, the MM5 NLM code is temporarily
modified to remove some nonstandard features
(primarily, the use of Fortran-77 pointer variables)
before being passed to TAMC. The output
generated by TAMC is then hand-checked by
comparison against the existing, hand-coded TLM
and adjoint Version 1 codes, taking into account
differences between the Version 1 and 3.4 NLM
codes. Manual corrections are made as needed.

Both the TLM and adjoint are tested for
correctness. We use the standard comparison of
the TLM and finite difference NLM gradients to
check for correctness of the TLM:

[]
0lim1

),(

)()(→=−+
X

XX
XXX δ

δδ
δ
J

JJ

 (1)

where J(X+δX) and J(X) are from the NLM, and

δJ(X, δX) is from the TLM. The definition of the

adjoint is used to check for consistency between
the TLM and adjoint:

xyxy ,*, LL =
 (2)

where x is the TLM input, y = L(x) is the TLM
output, and L, L* are the TLM and ADJ,
respectively. This testing is performed for
individual subroutines as well as the complete
model integration.

4. DISCUSSION

Overall, there was remarkable agreement
between the TAMC generated derivative (TLM

and adjoint) code and the hand-coded versions,
not only in the assignment statements, but also in
the choice between storing and recalculating
intermediate NLM quantities. Almost all of the
problems encountered by TAMC have to do with
the recomputation of the NLM, not with the
derivative code itself. The most common types
were caused by known limitations of TAMC:

- complicated control flow with goto
statements ("spaghetti code")

- dependencies on array elements.
These are illustrated in the following examples.

4.1 An Example Of Incorrect NLM Dependency
Analysis: BDYRST

In this example, the dependency of TAMC is
incorrect because TAMC considers dependencies
of entire arrays, not individual elements. The
NLM code for this subroutine contains if-
statements that depend on the assignments to TA
in the first two do-loops (over j and i):

do nb1=1,lb
 nb=nb1
 is=nb1
 js=nb1
 ie=iend+1-nb1
 je=jend+1-nb1
 do k=1,kl
 do j=nb+1,je-1
 ta(is,j,k)=tsb(j,k,nb)+dtbc*tten(is,j,k)
 ta(ie,j,k)=tnb(j,k,nb)+dtbc*tten(ie,j,k)
 enddo
 do i=nb,ie
 ta(i,js,k)=twb(i,k,nb)+dtbc*tten(i,js,k)
 ta(i,je,k)=teb(i,k,nb)+dtbc*tten(i,je,k)
 enddo
 do j=nb+1,je-1
 if(ta(is,j,k).lt.epsi)ta(is,j,k)=epsi
 if(ta(ie,j,k).lt.epsi)ta(ie,j,k)=epsi
 enddo
 do i=nb,ie
 if(ta(i,js,k).lt.epsi)ta(i,js,k)=epsi
 if(ta(i,je,k).lt.epsi)ta(i,je,k)=epsi
 enddo
 enddo
enddo

If the "-pure" option was selected (in which NLM
code is only generated if needed for the TLM), the
TLM code generated by TAMC omitted the first
recalculation of the TA variable. Without this
option, the following correct code was generated
(the lines omitted in the -pure version are
highlighted):

do nb1 = 1, lb
 nb = nb1
 is = nb1
 js = nb1
 ie = iend+1-nb1
 je = jend+1-nb1
 do k = 1, kl
 do j = nb+1, je-1
 g_ta(is,j,k) = g_tsb(j,k,nb)+
 g_tten(is,j,k) * dtbc
 ta(is,j,k) = tsb(j,k,nb)+dtbc*tten(is,j,k)
 g_ta(ie,j,k) = g_tnb(j,k,nb)+
 g_tten(ie,j,k)*dtbc
 ta(ie,j,k) = tnb(j,k,nb)+dtbc*tten(ie,j,k)
 end do
 do i = nb, ie
 g_ta(i,js,k) = g_tten(i,js,k)*dtbc
 g_twb(i,k,nb)
 ta(i,js,k) = twb(i,k,nb)+dtbc*tten(i,js,k)
 g_ta(i,je,k) = g_teb(i,k,nb)+g_tten(i,je,k)
 *dtbc
 ta(i,je,k) = teb(i,k,nb)+dtbc*tten(i,je,k)
 end do
 do j = nb+1, je-1
 if (ta(is,j,k) .lt. epsi) then
 g_ta(is,j,k) = 0.
 ta(is,j,k) = epsi
 endif
 if (ta(ie,j,k) .lt. epsi) then
 g_ta(ie,j,k) = 0.
 ta(ie,j,k) = epsi
 endif
 end do
 do i = nb, ie
 if (ta(i,js,k) .lt. epsi) then
 g_ta(i,js,k) = 0.
 ta(i,js,k) = epsi
 endif
 if (ta(i,je,k) .lt. epsi) then
 g_ta(i,je,k) = 0.
 ta(i,je,k) = epsi
 endif
 end do
 end do
end do

4.2 An Example Of Incorrect NLM
Recomputation: CUPARA2

In this example, the errors in the NLM code
were generated by goto statements characteristic
of older Fortran codes, as found in the Kuo
cumulus parameterization scheme of the MM5.
The NLM contained the following code segments,
in which the vertical loop limits for the cloud
computations are derived by a computation of
cloud base and height. TAMC encountered two
problems in this case: (1) it generated
unnecessary TLM code of the cloud base and top
(these are more properly considered the NLM
trajectory about which to linearize), and (2) crucial
goto-statements (highlighted below) were missing,
which led to incorrect loop limits.

c$$$ The preceding code computes the lifting
c$$$ condensation level sigma (SIGLCL) and the
c$$$ cloud and environmental values of
c$$$ saturation equivalent potential
c$$$ temperature (EQTM and SEQT)

 DO 220 K=1,KL
 IF(A(K).GE.SIGLCL)GOTO 230
220 CONTINUE
230 CONTINUE
kbase = k
if (kbase .gt. kl) then
 kbase = kl
endif
do kk = 1, kbase
 k = kbase+1-kk
 DEQT=SEQT(K)-EQTM
 IF(DEQT.GT.DLT)GOTO 270
end do
270 continue
ktop = k

These errors were corrected manually.

4.3 An Example Of Inefficient NLM
Recomputations: TRANSM

In many of the MM5 physics subroutines all
computations are performed independently for
each vertical column, but are contained inside a
loop over a horizontal grid index (i) for
computational efficiency. In some cases the
adjoint code generated by TAMC reversed the
order of this i-loop, and either inserted nested
loops over i, or used local storage to recompute or
restore the NLM for all previous horizontal
gridpoints. For example, in the following NLM
code atmospheric radiative transmissivities are
computed from, among others, column
precipitable water (PRW) computed previously:

ilx = iyy-1
do i = 1, ilx
 prw(i,j) = amin1(prw(i,j),4.99)
 prw(i,j) = amax1(prw(i,j),0.01)
end do
do i = 1, ilx
c$$$ The following computes the output from
prw
(code not shown)
end do

In the above, i and j are both horizontal grid
indices. The TAMC generated code contains
storage and recomputations for all horizontal
gridpoints (unnecessary statements highlighted):

do ip2 = 1, mjx
 do ip1 = 1, mix
 prwh(ip1,ip2) = prw(ip1,ip2)
 end do
end do
ilx = iyy-1
do i = 1, ilx
 prw(i,j) = amin1(prw(i,j),4.99)
 prw(i,j) = amax1(prw(i,j),0.01)
end do
do i = 1, ilx
c$$$ The following computes the
c$$$ adjoint of prw
(code not shown)
end do
do ip2 = 1, mjx
 do ip1 = 1, mix
 prw(ip1,ip2) = prwh(ip1,ip2)
 end do
end do
do i = 1, ilx
 prw(i,j) = amin1(prw(i,j),4.99)
 a_prw(i,j) = a_prw(i,j)*(0.5+
 sign(0.5,prw(i,j)-0.01))
 do ip2 = 1, mjx
 do ip1 = 1, mix
 prw(ip1,ip2) = prwh(ip1,ip2)
 end do
 end do
 a_prw(i,j) = a_prw(i,j)*(0.5+
 sign(0.5,4.99-prw(i,j)))
end do

This code was manually simplified as follows:

do ip1 = 1, mix
 prwh(ip1) = prw(ip1,j)
end do
ilx = iyy-1
do i = 1, ilx
 prw(i,j) = amin1(prw(i,j),4.99)
 prw(i,j) = amax1(prw(i,j),0.01)
end do
do i = 1, ilx
c$$$ The following computes computes the
c$$$ adjoint of prw
(code not shown)
end do
do i = 1, ilx
c$$$ Only restore prw for current i:
 prw(i,j) = prwh(i)
 prw(i,j) = amin1(prw(i,j),4.99)
 a_prw(i,j) = a_prw(i,j)*(0.5+
 sign(0.5,prw(i,j)-0.01))
c$$$ Only restore prw for current i:
 prw(i,j) = prwh(i)
 a_prw(i,j) = a_prw(i,j)*(0.5+
 sign(0.5,4.99-prw(i,j)))
end do

5. CONCLUSIONS

The TAMC derivative code generator was
successfully applied to the MM5 (v3.4). For this
model code, for which both tangent linear and

adjoint source codes were available for a previous
version, we found that TAMC was best used as a
development tool, with separately maintained TLM
and adjoint versions of the source code. This
approach makes it possible to minimize changes
to the MM5 code as supported by NCAR, but it
requires a mixture of manual and automatic code
generation. Manual corrections and simplifications
of the generated code were necessary in some
cases, mostly involving recomputations of the
NLM.

Acknowledgements: This work was supported by
the Department of Defense (DoD) High
Performance Computing (HPC) Modernization
Office’s Common High Performance Computing
Software Support Initiative. Additional support
was provided from the DoD Major Shared
Resource Center at Wright-Patterson AFB for time
on the IBM SP3.

REFERENCES

Giering, R. and T. Kaminski, 1998: ACM Trans. on
Math. Software, 24(4), 437-474.

Kaminski, T., R. Giering, and M. Heimann: Phys.
and Chem. of the Earth, 21(5-6), 457-462.

J.G. Michalakes, 2000: Scientific Programming, 8,
5-12.

Ruggiero, F.H., G.D. Modica, T. Nehrkorn, M.
Cerniglia, J. Michalakes, X. Zou, 2001: A
MM5-based four-dimensional variational
analysis system developed for distributed
memory computers. Preprints, 14th Conf. on
Numerical Weather Prediction, 30 July-2
August, 2001, Ft. Lauderdale, FL, American
Meteorological Society (this volume).

Zou, X., W. Huang, and Q.~Xiao, 1997: A User's
Guide to the MM5 adjoint modeling system.
NCAR TN 437+IA.

