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1. INTRODUCTION

The primary goal of forecast verification is to
answer the question: “how good is this forecast?” or
“how good is this set of forecasts?”  As is the case for
most deceptively simple questions, a simple answer is
usually not sufficient.  In particular, some of the practical
difficulties associated with verifying forecasts from meso-
or smaller-scale models have not yet been satisfactorily
resolved.  As computing power increases, operational
weather forecasting centers obtain the capability to run
numerical models that contain increasingly higher
resolution.  Since the amplitude of forecast features
(e.g., precipitation maxima) from these models tends to
increase as the horizontal grid spacing decreases,
relatively small errors in space can cause very large
differences between forecast and observed values at a
specific location.  As a result, statistical measures of
performance obtained by traditional verification
approaches will look poor when forecast and observed
fields containing small-scale, high-amplitude features
are compared. This is perhaps best illustrated by an
example.  

2. THEORETICAL EXAMPLE

In this example, simulated precipitation fields were
generated using an elliptical shape function (Williamson,
1981).  In the “observed” field (Fig. 1), a relatively large
scale ellipse is found containing several smaller-scale,
higher-amplitude ellipses embedded within it. The
domain consists of 128 x 128 grid points.  For the sake of
providing dimensions to the problem, if we assume the

Figure 1: Simulated observed precipitation field.
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Figure 2: Simulated precipitation forecast #1.

Figure 3: Simulated precipitation forecast #2.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

20 40 60 80 100 120

20

40

60

80

100

120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

20 40 60 80 100 120

20

40

60

80

100

120



grid spacing is 5km, the large-scale ellipse is
approximately 1000km long  and 300km wide while the
smaller-scale ellipses are approximately 100km long and
50km wide.  Simulated forecast #1 (Fig. 2) consists of a
single larger-scale ellipse, whose center is displaced
compared to the observed larger-scale ellipse but with a
similar amplitude.  The orientation of the ellipse is also in
error, and the forecast ellipse is also wider than the
observed.  Simulated forecast #2 (Fig. 3) contains
features that are shaped similarly (both larger and
smaller-scale) to the observed field.  The entire area is
displaced to the “southeast” compared to the observed
field and the amplitude of the larger-scale ellipse is
slightly less than the observed.  The randomly
configured smaller-scale ellipses are  positioned
differently relative to the center of mass of the larger-
scale feature than in the observed field.  Subjective
visual inspection of these two forecasts indicate that
forecast #2 is more realistic than forecast #1.  This may
translate into more valuable forecast information to a
end-user or decision maker who is sensitive, for
example, to the occurance/non-occurance of the
smaller-scale, higher-amplitude features found in the
observed field. On the other hand, other users of the
forecast information may find that the smoother forecast
is of greater value for their particular situation.  We will
now attempt to determine whether or not various
methods of verifying these forecasts will uncover the
value of this particular forecast situation. 

2.1  Measures-oriented results

Table 1 displays the results of several traditional
verification measures applied to these two forecast

fields. The two forecasts have the same bias (ratio of

average forecast to average observation) which
indicates that neither forecast is suffering from a large
bias error.   In terms of the mean absolute error and root
mean square (RMS) error, forecast #1 produced lower
scores, which are preferred.  For the threat score and
equitable threat score (Mesinger, 1996), using the 0.45

threshold, forecast #1 produces higher scores, which are
preferred.  In this case, the various traditional verification
meausres shown here indicate that the more detailed
forecast #2 is of lesser quality than the smoother
forecast #1.  It seems clear that answering the question
of “how good is this forecast?” with only a few scalar
measures is unsatisfactory.

2.2  Distributions-oriented results

Conclusions regarding the absolute or relative
performance of forecast systems are often made based
upon a few measures of performance (e.g., Mesinger,
1996).  This type of scalar analysis of verification
information is defined by Brooks and Doswell (1996) as
a measures-oriented approach to verification.  An
alternate and more complete approach to verification
involves the analysis of the joint distribution of forecast
and observations (Murphy and Winkler, 1987), dubbed
by Brooks and Doswell (1996) as the distributions-
oriented approach.  Although analyzing and explaining
the results of a more complex verification requires a
great deal of effort, the time and effort required to
perform a distributions-oriented verification should be
considered more than just a luxury.  Previous research
(e.g., Brooks and Doswell, 1996) highlights the danger of
ignoring the complexity and dimensionality of verification
and touts the advantages of a more complete analysis of
the relationship between forecasts and observations.
Here we provide a brief analysis of the previous example
using the distributions-oriented approach through
examination of scatter plots (Figures 4 and 5).

In Figure 4 the joint distribution of observed and
and forecast values for forecast #1 is plotted in a scatter
diagram while Figure 5 shows the same information for
the more detailed forecast #2.  Within the distributions-
oriented approach to verification, Murphy (1993) defines
several specific aspects of forecast quality, such as bias,
accuracy, association, etc.   A complete analysis of the
forecast verification information provided by the
distributions-oriented approach will involve examination
of all of the various aspects.  We have already found that
the bias of each forecast, defined as the ratio of the
average forecast to the average observation, is equal to
0.98.  Forecast  accuracy, defined as the average degree
of correspondence between individual forecasts and
observations, is typically measured by scores such as
the mean absolute error or root mean square error
(Table 1).  According to the measures found in Table 1,
forecast #1 is more accurate than forecast #2.
Association, defined as the overall strength of the linear
relationship between forecasts and observations, is
typically measured by the correlation coefficient.  In this

Verification measure Forecast #1 Forecast #2

Mean absolute error 0.157 0.159

RMS error 0.254 0.309

Bias 0.98 0.98

Threat score 0.214 0.161

Equitable threat score 0.170 0.102

Table 1: Results of traditional verification measures for simulated pre-
cipitation fields



case, forecast #1 has a correlation coefficient of 0.486
while forecast #2 has a correlation of 0.429.  Therefore,
a brief examination of the distributions-oriented
verification information shows that for some (but not all)
aspects of forecast quality, forecast #1 is preferred over
the more detailed forecast #2.

3. VERIFICATION OF FORECAST REALISM

In previous hypothetical example, both traditional
measures-oriented and distributions-oriented
approaches to verification represented a forecast system
that contained realistic small-scale, high-amplitude fea-
tures as lesser quality when compared to one that did
not.   Despite the potential for large errors at particular
points, predicted fields that contain realistic spatial struc-
tures, scales, and amplitudes may be of considerable
value to certain users (e.g., mesoscale forecasters).
Consequently, from the point of view of these users, the
value of the more detailed forecast has not be properly
determined via these methods of analyzing forecast
quality.   Anthes (1983) recognized this problem early on
and suggested an alternate type of verification for the
evaluation of meso- and smaller-scale prediction
models, that is, the determination of the “realism” of a
forecast.

One technique suggested by Anthes (1983) to
evaluate the realism of a forecast involves the
examination of characteristics of significant phenomena,
such as the central pressure of cyclones, or maximum
wind speeds of thunderstorms.  Along these lines,
Williamson (1981) presented a method of pattern

recognition to objectively identify geopotential height
systems in a constant pressure-surface field.  An
empirical function was fit to the field that represents a
high or low center, elliptically shaped with amplitude,
position, and shape parameters.  The parameters
defining the function were determined by minimization,
and good first guesses were required.   A major issue
regarding this technique is that it relies on an empirical
function to fit shapes in the forecast and observed fields.
This has the advantage of being able to explicitly define
the attributes of the phenomena of interest.  However,
this also has the disadvantage of trying to fit possibly
complex natural patterns by an empirical shape function.
Ebert and McBride (2000) also present methods of veri-
fying characteristics of  “phenomena” (contiguous rainfall
areas).  When there is some overlap between observed
and forecast precipitation areas, Ebert and McBride
(2000) decompose the forecast error into components
due to displacement, amplitude, and “shape” errors.
While information on the differences between forecast
and observed spatial structure is certainly useful, it is
unrelated to the types of meteorological phenomena
associated with the forecast and observed areas of
rainfall, whether these were in agreement, etc.  Again,
returning to our simulated example, both forecast #2 and
observed rainfall fields contained the same scales of
elliptically-shaped rainfall, but distributed differently in
space.  In this case, the diagnosed “shape” errors would
be large, even though the size and shape of the smaller-
scale rainfall predicted features were nearly identical to
those observed.

Anthes (1983) also suggested comparing the

Figure 4: Scatter diagram of the joint distribution of observed and fore-
cast values for forecast #1

Figure 5: As in Figure 4 except for forecast #2



observed and forecast spectra of certain fields.  Zepeda-
Arce et al (2000) provide a recent example, using
wavelet transforms to compute the spatial variation of
the rainfall field as a function of horizontal scale.
Examination of how the variance of the spatial
fluctuations change as a function of scale for the
observed and forecast fields shows how well the forecast
is capturing the spatial structure of the field.  This
technique provides information on the “climatology” of a
forecast system, but no information on the forecast
accuracy.  Information on displacement and phase errors
will not be provided by this type of technique.  

Anthes (1983) also recommended the use of a
correlation matrix scoring method (Tarbell et al, 1981).
Although this may be able to provide some information
on phase or displacement errors as well as the spatial
structure of the fields, this method cannot objectively
determine whether the maximum correlation is the result
of the same (or similar) meteorological phenomena.  In
addition, the presence of small-scale, high-amplitude
features may cause substantial uncertainty in the deter-
mination of the phase or displacement error.  Returning
to our example, one finds several different local maxima
through the auto-correlation technique.

4. DEVELOPMENT OF AN “EVENTS-ORIENTED” 
APPROACH TO VERIFICATION

The previously discussed research on verifying
forecast realism only provided a portion of the informa-
tion that one could possibly obtain by a more complete
analysis.  It is possible that more useful verification infor-
mation could be obtained if one were to classify or cate-
gorize the forecast and observed fields prior to
verification.  For example, the forecast and observed
fields could be decomposed into subsets of small
domains of a predetermined size.  The predominant
meteorological phenomena, or event contained within
each subset could be classified.  Once identified within
the observed and forecast fields, the joint probability of
the forecasts and observations of particular events could
also be examined.  There appears to be an opportunity
to extend the general framework of the distributions-ori-
ented verification approach to verifying the realism of
forecasts.  

Therefore, we plan to develop a method to obtain
verification information on spatial patterns found in fore-
cast and observed fields.  By applying pattern recogni-
tion techniques, fields can be decomposed into sets of
different events.  Rather than trying to fit empirical shape
functions to the fields (Williamson, 1981), the pattern
recognition techniques will allow attributes associated
with naturally occurring patterns to define the events.

Ideally, the events will represent or at least correspond to
significant meteorological phenomena.    The approach
of analyzing the joint distribution of the set of forecast
events compared to the set of observed events could be
described as an events-oriented approach to verification.

The bulk of this work (in progress) will involve
developing an objective method of identifying and
classifying events. This research will follow the process
and use the well-established techniques in the field of
knowledge discovery in databases (KDD, Fayyad et al
1996) and data mining, associated with the tools of
discovery of patterns within large and complex sets of
data.   A large historical database, richly populated with a
variety of interesting and important phenomena that
span a large portion of the entire range of possible
events, will be analyzed.  Several methods of data
reduction will be tested, including: analysis of  statistical
distributions, cluster analysis, principal component
analysis, and spectral/wavelet analysis.

When thoroughly and carfefully analyzed, proper
verification information allows for optimal use of forecast
information by knowledgeable decision makers.
However, regarding the issue of verifying forecast and
observed fields that contain high-amplitude, small-scale
features, current approaches can often be misleading
and are not providing optimal information on the true
quality of those forecasts.  For the forecaster who is
concerned with the problem of predicting mesoscale
phenomena, such as forecasters at the National
Weather Service’s Storm Prediction Center, (SPC) or
perhaps a model developer attempting to improve
numerical guidance for this purpose, various methods of
determining the value of forecasts containing small-
scale, high-amplitude features need to be developed.   
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