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1. INTRODUCTION 

 
Strong associations between observed 

climate anomalies at lags of one season to years 
in advance and normalized area burned in the 
western U.S. wildfire season have recently been 
described using a newly compiled comprehensive 
gridded western regional fire history (Westerling et 
al 2001b). Earlier studies of fire scar 
dendrochronologies and local fire histories have 
demonstrated that large-scale climate patterns are 
linked to the severity of the wildfire season in 
various regions of the U.S. at similar lead times 
(Simard et al.1985, Swetnam and Betancourt 
1990, Balling et al 1992, Swetnam and Betancourt 
1998, Jones et al. 1999).  These relationships and 
the availability of a comprehensive western wildfire 
history motivate this experimental statistical 
forecast methodology for the western wildfire 
season. 

Previous work (Westerling et al 2001a & 
b) has established that lags of the Palmer Drought 
Severity Index can be used to forecast normalized 
acres burned at lead times of a season to years in 
advance, using co-located PDSI values as 
regressors.  This work has also shown that 
regional indices describing modes of variability in 
PDSI—represented by leading principal 
components (PCs) of lagged PDSI values—show 
similar skill in forecasting western wildfire season 
severity.  Moreover, models based on these 
regional indices show impressive predictive skill 
even in locations where strong associations 
between local PDSI values and normalized acres 
burned are lacking.   

Canonical Correlation Analysis (CCA) 
offers a method for constructing western wildfire 
season severity models whose prediction skill 
derives from spatial and temporal patterns in 
climate spanning the western U.S. In this example 

                                                 
*corresponding author address:   
Anthony L. Westerling, Climate Research Division, 
Scripps Institution of Oceanography, University of 
California, San Diego, Mail Code 0224, 9500 
Gilman Drive, La Jolla, CA  92093-0224; email: 
leroy@ucsd.edu.  

the authors estimate a forecast model using a 
CCA to calculate linear relationships between 
principal components of seasonal acres burned on 
a 1x1 degree lat-lon grid and principal components 
of lagged U.S. Climatological Division PDSI values 
(similar to the methodology in Gershunov et al 
2000).  Jack-knife cross-validation is used to 
estimate robust measures of forecast skill for a 
range of choices for the number of principal 
components and canonical correlations 
incorporated in the model.  A Skill Optimization 
Surface (SOS) is used to select a parsimonious 
model maximizing forecast skill over the entire 
region. 

   
2. DATA 
 

The fire history used here is composed of 
seasonal log10 acres burned on a 1 x 1 degree grid 
extending from 31?N to 49?N latitude and from 
101?W to 125?W longitude for 1980 through 2000.  
These data were compiled from 300000 quality-
controlled fire reports of the Bureau of Land 
Management (BLM), U.S. Forest Service (USFS), 
National Park Service (NPS) and Bureau of Indian 
Affairs (BIA).  The log10 transformation was used 
to normalize the data.  Only the 330 grid cells 
averaging at least one fire per fire season are 
included in the analysis.    

For predictors, 110 western U.S. Climate 
Division PDSI series are used at five different lags: 
March and December immediately preceding the 
fire season, August and March one year previous 
to, and August two years prior to the fire season, 
for a total of 550 predictor variables (cf. Westerling 
et al 2001a). 
 
3. METHODS 
   

Since a CCA cannot yield a unique 
solution if the number of predictor or predictand 
variables is greater than the number of 
observations, the dimensions of the predictor and 
predictand data sets were reduced by substituting 
their principle components (PCs) for each of the 
two data sets.  (For a detailed CCA methodology 
see Barnett and Preisendorfer 1987, Johnson and 



Wichern 1998, Gershunov et al 2000).  The first 
PC of each data set is the linear combination of all 
the variables in the data set which has maximum 
variance.  Each subsequent PC is likewise a linear 
combination of the original variables with its 
variance maximized subject to the constraint that 
the PC is independent of each other PC.  Thus, 
each PC summarizes an independent mode of 
variability in its original data set, and taken 
together the PCs summarize all the information 
contained in the original data set.  For the 
predictor data, the first six principal components 
explain over 70% of total variance.  Similarly for 
the predictands, the first six principal components 
explain more than 80% of total variance.  So, 
relatively few PCs are needed to convey most of 
the information contained in these data.  

We use a CCA to look for patterns in each 
of the two PC data sets that are highly correlated 
with each other. A linear combination of the 
predictor PCs and a linear combination of the 
predictand PCs are calculated such that the 
correlation between the two is maximized. Each 
subsequent pair is similarly calculated to maximize 
their correlation subject to the constraint that they 
be uncorrelated with the other pairs.  Since these 
canonical correlates (CCs) are linear combinations 
of PCs, which in turn are linear combinations of 
the original data, we can specify a set of CCs to 
be our linear forecast model and solve for 
standardized log10 acres burned, our predictand, 
given the appropriate lagged PDSI values. 

To find a parsimonious CCA model using 
the specified lags of PDSI, we calculated the Skill 
Optimization Surfaces (SOS) shown in Figure 1.  
The x-axis denotes the number of PCs contributed 
from the predictor and from the predictand data.  
The number of each are constrained to be equal 
here to render the solution more tractable.  The y-
axis denotes the number of CCs included in the 
model.  Note the triangular shape of the shaded 
area—the maximum number of CCs is limited to 
the number of PCs included.  Thus, in the lower 
left corner we use only the first principal 
component, which explains the largest share of 
variance, from both the predictors and 
predictands, and as a result are constrained to 
estimating our model from only the first CC pair.  
As we move to the right, adding PCs in order of 
their share of the total variance of their data sets 
explained, we can choose to move up the y-axis, 
adding additional CC pairs in our model in order of 
strength of correlation.  
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Figure 1:  Skill optimization surfaces showing 
model skill calculated for the entire western U.S. 
together (330 grid points) using 3 different 
metrics comparing cross-validated forecast and 
observed transformed acres burned: top: sum of 
the squared positive correlations, middle: 
percentage of grid cells with significant 
correlations, and bottom: sum of correlations. 
Each skill optimization surface shows skill 
calculated for a cross-validated series of models 
with the indicated dimensions—the number of 
principal components is on the x-axis, the 
number of canonical correlations is on the y-axis. 
Darker shading indicates higher skill.   

The shading in each SOS denotes the 
over-all skill of the forecast, calculated here using 



three different metrics.  The first (Figure 1, top) is 
the sum of squared positive correlations between 
the cross-validated series of model estimates and 
the observed predictand for all 330 grid cells with 
one or more fires per year on average.  Negative 
correlations indicate no skill and were excluded.  
This metric gives more weight to models with a 
small percentage of grid cells with high forecast 
skill.  In the second metric, the percentage of grid 
cells with correlations within the 95% confidence 
interval of the t-distribution are included. This 
metric tends to favor models with moderate skill 
over a wide area over those with high skill in a few 
grid cells.  Finally, in the third metric, the sum of 
correlations is used.  Negative, correlations, 
indicating no skill, are more costly in this metric 
than in the others. Note that in each case, the 
model dimensions showing the greatest skill—six 
canonical correlations composed of seven 
principal components—are the same for this 
example.        

To avoid an inflated estimate of the skill 
achieved in this exercise, model diagnostics here 
are all for results using jack-knifed cross-
validation. That is, for each time step of the model, 
a forecast is made using model coefficients 
estimated on the subset of the data excluding that 
time step. This removes the potential for false 
statistical skill in the diagnostic measures reported 
here using Pearson’s correlations. In the context 
of our CCA models, jack-knife cross-validation 
requires not only that at each time-step the 
coefficients of our forecast model be estimated on 
the subset of the data excluding that time step, but 
also that the loadings on the principal components 
and canonical correlations be recalculated at each 
time-step on that subset as well.  Thus, for each 
time-step and number of PCs and CCs we are 
calculating a different model.  The SOS does not 
help us to select an exact, fixed model, but rather 
the dimension or level of complexity of model 
which gives the best result. In this example, the 
SOS shows a maximum in skill at 7 PCs and 6 
CCs, so we further examine the properties of a 
cross-validated series of models using these 
dimensions. 
 
3. RESULTS 
 

Figure 2 shows the skill, expressed as the 
correlation between cross-validated model 
estimates and observed transformed acres burned 
for a CCA using 7 principal components from the 
predictor and predictanddata sets to construct 6 
canonical correlations.  The model appears to do 
particularly well in the Intermountain West and 

parts of the Rockies.  It also shows high skill in the 
Southwest along the California-Arizona border and 
central Arizona.  It performs rather poorly in 
coastal southern and central California, where our 
data are sparse.  The eastern-most grid-cells in an 
arc up from the Mexico-New Mexico border are 
also poorly represented in the fire history data. 
The wet Pacific Northwest is better represented in 
our data, but shows lower skill in this model. 
 These results show that useful skill can be 
achieved in forecasting fire season severity using 
lags of the PDSI. Acres burned aggregated over a 
one-degree grid may be too noisy to fully exploit 
the potential forecast skill for fire season severity 
using climate indices such as the PDSI.  
Elsewhere (Westerling et al. 2001a & b) we 
achieve better forecast skill for areas such as the 
Great Basin and Sierra Nevada by aggregating fire 
activity over larger regions with similar vegetation 
and climate. In future work will explore a 
combination of these approaches, using this CCA 
methodology for indices of fire season activity 
aggregated over larger areas with common 
characteristics. 
 

 
Figure 2: Model skill represented as correlation 
between forecast and observed transformed 
acres burned on a 1 x 1 degree grid.  Forecasts 
are from a cross-validated series of models using 
7 principal components and 6 canonical 
correlations. Darker shading represents higher 
correlations (skill), while white areas indicate grid 
cells with either no skill or no data. 
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