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1.  INTRODUCTION  
 

It is well known that numerical weather predictions 
are sensitive to small changes in the initial conditions, 
i.e., a rapid growth of the initial errors can lead in a 
relatively short time to large forecast errors. During 
the last decades much effort has been devoted to 
study and improve the methods used for the 
preparation of the initial conditions for numerical 
atmospheric models (the so-called analysis), as well 
as to understand the mechanisms involved in the 
growth of the initial errors. 

The analysis is obtained as a statistical interpolation 
of short-range numerical forecasts (known as 
background) with new observations. The weight given 
to each of these contributions is essentially 
proportional to the inverse of their error covariance. It 
follows that a good representation of the observation 
and background error covariances is one of the major 
goals in the development of data assimilation 
systems. 

In 3D-Variational schemes the background error 
covariance matrix is statistically derived from long-
term statistical estimations and it is maintained 
constant in time during the assimilation cycle. This 
implies that the large time dependence of the errors 
(“errors of the day”) is neglected, despite its large 
variability (Corazza et al, 2001). 

There are several methods that try to account for 
the errors of the day in the forecast error covariance, 
including 4D-Var, Kalman Filtering, and the method of 
representers (e.g. Klinker et al., 2000; Bennet et al., 
1996; Houtekamer and Mitchell, 1998; Hamill and 
Snyder, 2000). Unfortunately, these methods are 
computationally very expensive, and can only be 
implemented with substantial shortcuts, such as the 
use of a reduced rank background error covariance 
matrix in Kalman Filtering and lower model resolution 
in 4D-Var. It follows that it is important to develop 
new, low-cost methods aimed to improve the 
estimation of the background error covariance matrix. 

Kalnay and Toth (1994) argued that the similarity 
between breeding (Toth and Kalnay, 1993, 1997) and 
data assimilation suggests that the background errors 
should have a structure similar to those of bred 
vectors. They also proposed a simple method to 
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include the information of the bred vectors in the data 
assimilation cycle. 

Here we take advantage of the relationship between 
the bred vectors and the analysis and background 
errors demonstrated by Corazza et al., 2001, for a 
simple quasi-geostrophic model (Morss, 1999), and 
test whether it is possible to augment the constant 
forecast error covariance used in 3D-Var with “errors 
of the day” derived from the breeding method. We 
present results obtained with different methods aimed 
to include in the data assimilation scheme (i.e., in the 
representation of the background error covariance 
matrix) the information given by the bred vectors. 

The numerical model is a quasi-geostrophic (QG) 
mid-latitude flow in a channel discretized by finite 
differences both in horizontal and vertical directions. 
The simulated data assimilation is performed with an 
algorithm similar to the operational Spectral Statistical 
Interpolation (SSI) at NCEP (Parrish and Derber, 
1992). “Rawinsonde observations” are generated 
every 12 hours by randomly perturbing the true state 
at fixed observation locations. Bred vectors are 
produced using a method similar to that adopted at 
NCEP (Toth and Kalnay 1993,1997), rescaling the 
difference between the perturbed runs and the control 
forecast every 12 hours. 

Since this is a simulation system, we can explicitly 
define the “true state of the atmosphere” (by 
integrating the model from a given initial state) and 
therefore study the analysis and forecast errors. A 
perfect model assumption is made so that our 
conclusions are not necessarily valid for more 
complex models with model errors, and similar tests 
have to be made with more general simulation 
systems and with real forecast systems.  
 

2.  BRED VECTORS AND BACKGROUND ERROR

 
 

Corazza et al. (2001) found that bred vectors in this 
QG simulation system are indeed closely related to 
the background errors. Figure 1 shows a typical 
example of the largest values of the midlevel 
background error in potential vorticity (solid lines) 
against two arbitrarily chosen bred vectors (dotted and 
dashed lines respectively). The patterns are in good 
agreement in some areas, and agree less well in other 
areas. In particular, the agreement is higher in those 
areas where the background error is larger. In 
general, these results are valid also for the vertical 
structure of the fields and at different observational 
densities [only 16 observations were used in Figure 1, 



with similar results obtained with 32 and 64 
“rawinsondes” observation locations]. 

We found (Corazza et al., 2001) the following 
properties of the bred vectors: 
• Convergence to well organized structures in the 

bred vectors occurs within a few (3-5) days. This 
indicates that it is possible to operationally use the 
information given by the bred vectors without 
waiting an infinite time for asymptotic convergence. 

• Bred vectors obtained using normalizations based 
on the potential vorticity and on the stream function 
are virtually indistinguishable. 

• Bred vectors obtained using the “true” atmosphere 
are very similar to those obtained using the 
“analysis” atmosphere. This is true even if we use a 
low density observing network, suggesting that the 
bred vectors are not too sensitive to the details of 
the flow and that the errors themselves are more 
likely dependent on the large scale nature of the 
flow. 
Following Patil et al. (2001) we also computed a 

measure of the effective dimensionality of the space 
spanned by the bred vectors called Bred Vector 
Dimension (BV-Dimension). For every point a 
surrounding domain of 25 grid points (5×5) is 
selected. We consider the 25 dimensional vector 
composed of the values of potential vorticity over the 
grid points of the domain, which we refer to as a local 
vector. The BV-Dimension is a measure of the degree 
of linear independence of the k  local vectors ( k  
being the number of bred vectors) and is defined as: 
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where iσ , ki ,,1 �=  are the singular values of the 

k × k  covariance matrix of the 25× k  matrix formed 

by the local vectors. Note that kΨ ≤ . 

We found that for k =10 the local dimension of the 
subspace is always smaller than 6.5 and that in areas 
where the background errors are large it is usually 
between 2 and 4. These results did not change when 
a larger number of bred vectors was used, indicating 
that 10-15 vectors are enough (at least for a quasi-
geostrophic system) to give a complete representation 
of the space spanned by the bred vectors. 

We also defined the local angle between the 
forecast error and the subspace of bred vectors. We 
found that in most of the area the angle is confined to 
less than 10° (cosine larger than 0.985), suggesting 
that the background error is mostly confined to the 
subspace of the bred vectors. As in the case of the  
BV-Dimension, the areas with an angle larger than 
10° generally had small background errors. 

Similar results were obtained computing the local 
pattern correlation over the same 25 points between 
each bred vector and the background error and then 
identifying the maximum correlation at each point. We 
obtained high correlations in most of the domain of the 
model, which indicate that at least one bred vector 

has a structure similar to that of the error, in particular 
where the background error is large. 

These results suggest that the bred vectors can 
indeed be useful in specifying the part of the 
background error covariance matrix that corresponds 
to the “errors of the day”. In the following section we 
discuss some computationally inexpensive methods to 
take advantage of this information. 

 

3.

 BRED VECTORS IN DATA ASSIMILATION  
 

The original data assimilation cycle (referred to as 
the regular data assimilation system) is based on the 
NCEP 3D-Var scheme, and is solved iteratively for the 
analysis state ax  (Morss, 1999). Given the 

background state (or first guess - the 12 hour forecast 
from the previous analysis) bx , and the set of 

observations oy , the equation can be written as 

follows: 
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where 

B  is the background error covariance matrix,  
R  is the observation error covariance matrix, H  is 
the observation operator and H , TH are the matrices 
that represent the linearized H and its transpose 
respectively. The right part of the equation is 
computed at the beginning of the process, then the 
equation is iteratively solved for ( )ba xx −  until the 

equation is satisfied with an error smaller than a given 
threshold. 

The easiest way to introduce the bred vectors in this 
equation is to globally substitute B with the ensemble 
average of the outer product of the bred vectors. We 
can build a new background covariance matrix as 
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over the entire domain. The substitution of B  with the 
new matrix can be done at a negligible computational 
cost; moreover, this implementation allows to apply 
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can be generalized to: 
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where α  is a number between 0 (for the regular 
system) and 1 (background error covariance matrix 
based fully on bred vectors) and c  is a normalization 
factor kept constant in the results presented here. It 
should be noted that the covariances in B  were 
tuned to optimize the regular 3D-Var. 



In Figure 2 we show the squared analysis and 
forecast (up to 72 hours) errors in mid-level potential 
vorticity for the optimized regular system (diamonds) 
and for the simulation obtained using 10 bred vectors 
with α =0.4 (squares). The results are obtained 
averaging the errors over the horizontal domain every 
12 hours for a one-year simulation. The use of the 
bred vectors allows decreasing the squared error by a 
factor between 15 and 20% (around 8-10% in the 
error). Fig. 2 shows that the percentage improvement 
continues throughout the 72 hour forecast, suggesting 
that the correction to the analysis due to the bred 
vectors affects, at least in part, the growing errors. 

We want to understand whether the bred vectors 
are able to represent the evolution of the fast growing 
errors of the day associated with the short term 
forecast starting from the previous analysis. The 
errors of the analysis are due to forecast (background) 
as well as to observational errors, which constantly 
introduce random errors. However, the “classical” 
formulation of the bred vectors takes into account only 
the errors due to the forecast. For this reason, we 
modified the method to generate the bred vectors 
including “reseeding” with random “observational” 
errors. After every renormalization step (12 hours), we 
generate random errors y∆  at the observation 
locations  simulating the impact of the observational 
errors. Then we apply the transpose of the 
observation operator to obtain yx ∆=∆ TH , and add 

x∆  to the rescaled bred vectors. 
The third line (bottom - triangles) of Figure 2 shows 

the results obtained for this system using the same 
data assimilation scheme as before. The squared 
error in midlevel potential vorticity is now 40% smaller 
than that of the regular system (22% in the error). The 
relative improvement decreases slightly within the 
forecast, but it is still around 30% after 72 hours. More 
work has to be done to better understand why adding 
random errors to the bred vectors leads to such a 
large improvement. It may be due in part to the fact 
that adding random noise does not allow bred vectors 
to collapse into too few directions, and therefore to 
span a larger subspace that better represents the fast 
growing modes. The fact that after 72 hours the 
improvement is still far better than in the standard 
bred vector simulation indicates that the role of the 
random errors evolved for 12 hours upon the bred 
vectors is not limited to a mere correction of mostly 
decaying analysis errors uniformly distributed in phase 
space.  

Figure 3 shows the relative improvement (with 
respect to the regular 3D-Var data assimilation 
system) in the squared error in potential vorticity at 
midlevel, for the simulation obtained using bred 
vectors reseeded with random errors, and for different 
values of α . There is a remarkable impact of the 
background error covariance matrix derived from the 
bred vectors even for very small values of α , 
indicating that the new matrix is able to focus the 
corrections in the background state along the most 

unstable directions even when it is not the dominant 
part of B . It is interesting to note that for large values 
of α , when the role of the statistically derived B  is 
small, the augmented system is not able to maintain 
the error small. This indicates that the space spanned 
by the bred vectors is not large enough to represent 
all the error directions, and that the contribution of the 
regular part of the assimilation scheme cannot to be 
neglected when using global methods to include the 
bred vectors in the data assimilation cycle. This was 
also observed using local methods (not shown).  

 
4.  SUMMARY AND DISCUSSION  

 

We have used a 3D

-Variational data assimilation 
scheme for a quasi-geostrophic channel model 
(Morss, 1999) to study the structure of the background 
error and its relationship to the corresponding bred 
vectors. The results of Corazza et al. (2001) show that 
the bred vectors have spatial and temporal 
characteristics similar to those of the background 
“errors of the day”. They pointed out some properties 
of the bred vectors, including fast convergence to well 
organized structures, independence on the choice of 
the renormalization norm (potential vorticity and 
stream function) and similarity between bred vectors 
generated from the “truth” and from the analysis. We 
also showed that the subspace spanned by the bred 
vectors is able to locally describe most of the structure 
of the background error. 

Starting from these considerations we described a 
global approach to include the bred vectors in the data 
assimilation scheme and we showed that this method 
is able to reduce the squared error in the analysis and 
forecasts up to a factor of 40%. Moreover, we 
considered a modified version of the bred vectors 
aimed to take into account the observational errors 
introduced in the analysis step. Simulations using 
these vectors show a remarkable improvement of the 
performance of the assimilation cycle with respect to 
the one based on the standard bred vectors without 
random “reseeding”. 

We are presently testing new methods to locally use 
the bred vectors in the data assimilation system. The 
use of local methods is desirable in order to optimize 
the information given by two or more bred vectors, 
which may be, for example, positively correlated in 
one area and negatively correlated in another area far 
away. The background error correlations should 
vanish beyond a limited horizontal extent, whereas 
our use of global bred vectors implies correlations 
over the global domain. An example of local use of the 
bred vectors can be derived as a generalization of the 
method proposed by Kalnay and Toth (1994). If we 
assume for simplicity that the forecast error 
covariance is given locally by a single bred vector, 

TbbB = , that the observational error covariance is 

IR 2ρ= , and perform a preliminary analysis, then 
the Optimal Interpolation solution 
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where TP  is the projector operator from the global 
domain to the local domain. This system has a very 
low computational cost. A similar formula is valid for a 
set of locally orthogonalized bred vectors. As long as 
the preliminary analysis remains confined to the 
unstable subspace of the bred vectors, the 
computational cost remains low. 
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FIGURES

 
 

 
Fig. 1. Background error (solid line) and two randomly 
chosen bred vectors (dotted and dashed lines respectively) 
after 36 days from their initialization. The fields are 
normalized by their root mean square and contour lines are 
plotted for the values 2.3 and 3.  

 

 
Fig. 2. Squared errors in midlevel potential vorticity for the 
regular system, the standard bred vector system (α =0.3) 
and the bred vectors + random noise system (α =0.4). 

 

 
Fig. 3.  Relative improvement with respect to the regular 
data assimilation system in the analysis and forecast 
squared errors in midlevel potential vorticity varying α  from 
0 to 1, for the simulation with bred vectors obtained adding 
random noise after every normalization step. 


