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1.  INTRODUCTION

Precipitation-type forecasting is the
determination of when and where particular types
of precipitation (e.g., snow, rain, ice pellets,
freezing rain) will occur during a forecast period.
Although much is already known about the
physical processes that determine the type of
precipitation that reaches the ground, these
forecasts are very challenging for most
forecasters because of inadequate atmospheric
data sampling and limited access to high
resolution model data.

In this study, we examine the quality of six
precipitation-type algorithms using Eta and RUC
model data.  We also analyze the quality of the
probabilistic forecasts that were created from a
combination of the algorithm outputs.  Since a
early examination of the algorithms using
rawinsonde data showed that there was not one
algorithm that accurately diagnosed the correct
precipitation type for all types of precipitation, we
combined the algorithms to provide a measure of
forecast uncertainty.  Data used in this study was
created during the Precipitation-type Algorithm
Experiment (PTAX), which occurred during the
winter of 2000–2001 and involved meteorologists
at the University of Oklahoma, the
NOAA/Hydrometeorological Prediction Center,
and the NOAA/Storm Prediction Center.

2.  PRECIPITATION-TYPE ALGORITHMS

For this study, we tested six precipitation-
type algorithms using only the thermodynamic
data from the operational RUC and Eta models.
(Only the Eta results will be shown in this paper.)
All the algorithms used vertical thermodynamic
data to identify warm and cold layers above a
particular surface location (horizontal movement
of the rawinsonde during ascent is not
considered), where freezing and melting of a
hydrometeor may occur.  Most of these
algorithms are described elsewhere (Baldwin et
al. 1994; Bourgouin 2000; Czys et al. 1996;
Ramer 1993), so the description of each
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algorithm in this paper will be limited.  During this
experiment, the algorithms were evaluated at
locations where at least 0.1 mm of precipitation
was forecasted in a one-hour period by the
model.

2.1  Thickness

The thickness algorithm diagnoses
precipitation type based upon the average virtual
temperature, as determined by the hypsometric
equation and the difference of the geopotential
height of two pressure surfaces.   We determined
critical thickness values after examining the
studies of Keeter and Cline (1991), and Zerr
(1997) and identifying the values that were
consistent among the studies.  Using the
geopotential height data from the model output,
we determined the precipitation type near the
ground.  Snow was diagnosed if the 850–700 mb
thickness was ≤1540 m.  Rain was diagnosed if
the 1000–850 mb thickness was > 1310 m or if
the 850–700 mb thickness > 1560 m and the
surface Tw  > 0˚C; otherwise, if the surface Tw ≤
0˚C, then the algorithm diagnoses freezing rain.
If the 850–700 mb thickness > 1540 m and ≤
1560 m, then ice pellets are diagnosed.  The
algorithm only diagnoses the precipitation type if
the geopotential height data at all four mandatory
levels are available (i.e., no extrapolated data).

2.2  Ramer

The Ramer algorithm (Ramer 1993) uses p,
T,  relative humidity, RH, and Tw  to diagnosis
snow, freezing rain, ice pellets, rain, and mixed
precipitation.  It, too, is based on the ice fraction
of the precipitation at the ground.  The algorithm
begins by checking Tw  at every available data
level.  If Tw  at the lowest level is > 2˚C, then rain
is diagnosed; if it is ≤ 2˚C and the Tw  at every
other level is < -6.6˚C, then snow if diagnosed.
Other conditions require the algorithm to perform
additional calculations to determine the
precipitation type.

The algorithm begins by locating the
precipitation generation level, the highest
saturated layer (RH > 90%) with a depth of
roughly 16 mb.  Tw at that level determines the
initial water phase of the precipitation: if the
coldest Tw  is < -6.6˚C, then the hydrometeor is
entirely ice; otherwise, it is supercooled water.



According to the algorithm, if Tw at the
generation level is < -6.6˚C and the Tw at all the
other levels is < 0˚C, then snow occurs.

As the hydrometeor descends from the
generation level, the algorithm assumes that the
particle will begin to melt or freeze depending on
the Tw  of the hydrometeor’s environment. The
ice fraction of the hydrometeor is determined by
the formula

DI / d ln (p) = (0˚C – Tw) / E,              (1)

where E = E’ RH.  Ramer empirically derived the
constant, E’=0.045˚C , by examining 2084
observations of precipitation that occurred near
rawinsonde stations.  The range of I   is from 0
(liquid) to 1 (solid).  The final determination of the
precipitation type is made by the value ofI and Tw
at the lowest level.  If I > 0.85, and partial melting
has occurred, then the algorithm diagnoses ice
pellets.  If no melting has occurred, then snow is
diagnosed.  If I < 0.04 and the Tw  near the
ground is < 0˚C, then freezing rain is diagnosed;
otherwise, if the Tw near the ground is ≥ 0˚C,
then rain is diagnosed.  If 0.04 ≤ I ≤ 0.85 and the
surface Tw < 0˚C, then a freezing mix (one
precipitation type is freezing rain) is diagnosed;
otherwise, a frozen mix (no freezing precipitation)
is diagnosed.

2.3  BTC

The algorithm developed by Baldwin et al.
(1994), hereafter referred to as the BTC
algorithm, diagnoses a single precipitation type
(e.g., rain, snow, freezing rain, ice pellets) from
an observed thermodynamic vertical profile and
currently is used by the U.S. Weather Service.
Although this algorithm uses various empirically-
derived constants, other algorithm variables are
based upon their importance in the melting and
freezing of hydrometeors.  The basic procedure
used by the algorithm is to examine the vertical
thermal structure that a falling hydrometeor
encounters as it descends to the ground to
determine the potential for  freezing or melting.  It
identifies warm (> 0˚C) and cold (≤ 0˚C) layers
above a particular location by computing the area
between 0˚C and the wet-bulb temperature, Tw,
on a skew-T-logp diagram. The area is computed
separately for warm and cold layers and is used,
along with the surface temperature, To, to
determine precipitation type.

The algorithm begins by determining if
precipitation initially begins as supercooled water
or ice.  The precipitation generation level is
assumed to exist at the highest saturated layer
(T – Td < 6˚C).  Next, it computes the area
between –4˚C and Tw up to 500 mb, and the
area between 0˚C and Tw  of the surface-based
warm or cold layer.  The algorithm diagnoses
snow if the coldest temperature at any level with
a pressure, p, of 500 mb or greater is ≤ -4˚C, and

the area of the sounding between –4˚C and Tw is
not large (< 3000 deg. m.)

The algorithm diagnoses freezing rain when
the coldest temperature in a saturated layer is  >
-4˚C and To  is < 0˚C.  Freezing rain also is
diagnosed if the net area, with respect to 0˚C, of
the surface-based layer is > -3000 deg. m, the
area between –4˚C and Tw > 3000 deg. m, and
To  is ≤ 0˚C.

If the coldest Tw  in a saturated layer is ≤ -
4˚C, and the area between -4˚C and Tw is > 3000
deg. m, then ice pellets are diagnosed when the
surface-based cold layer is ≤ -3000 deg. m, or
the net area between 0˚C and Tw within the
lowest 150 mb is ≤ -3000 deg. m and the surface-
based warm layer is < 50 deg. m.

Rain is diagnosed when the coldest Tw in a
saturated layer is > -4˚C and To  is > 0˚C.  Rain
is diagnosed also when To > 0˚C and the area
between -4˚C and Tw is > 3000 deg. m, and the
net area between 0˚C and Tw within the lowest
150 mb is > -3000 deg. m, or the surface-based
warm layer is > 50 deg. m.

2.4  Bourgouin

The algorithm developed by Bourgouin
(2000) is similar to the BTC algorithm and
determines if enough energy is available in the
environment to melt or freeze hydrometeors.  It
computes the areas bounded by 0˚C and the
observed temperature > 0˚C (melting energy) and
the observed temperature < 0˚C (freezing
energy) on a standard tephigram.  The Bourgouin
algorithm determines precipitation type by
examining the magnitude of the melting and
freezing energies:  Snow occurs when the
melting energy of a surface-based layer is ≤ 5.6 J
kg-1 or the melting energy available in a mid-level
warm layer (a warm layer above a surface-based
cold layer) is < 2 J kg-1 when no surface-based
warm layer is present.   If the surface-based
melting energy is between 5.6 and 13.2 J kg-1,
Bourgouin notes that frozen and melted
precipitation are equally likely, so we randomly
choose either snow or rain.  Rain will also occur if
the elevated layer of melting energy is < 2 J kg-1

and the surface-based melting energy is > 13.2 J
kg-1.

If snow is not diagnosed, the algorithm
diagnoses freezing rain if the freezing energy <
46 + 0.66 X melting energy.  Although not
suggested by Bourgouin, we also require To <
0˚C; otherwise, if To ≥ 0, then rain is diagnosed.
Ice pellets occur when the freezing energy > 66 +
0.66 X melting energy and the surface-based
melting energy is ≤ 5.6 J kg-1.   As in the snow
diagnosis, if the surface-based melting energy is
between 5.6 and 13.2 J kg-1, Bourgouin notes
that both types are equally likely, so we choose
randomly either ice pellets or rain.  Also,
Bourgouin notes that for any freezing energy
between 46 + 0.66 X melting energy and 66 + .66
X melting energy, there is an equally probable



chance of freezing rain or ice pellets. In these
cases, we randomly choose either type, subject
to the proper To or surface-based melting energy
test described previously.  The various constants
used in this algorithm were empirically chosen by
Bourgouin (2000) after examining cases during
the 1989-1990 and 1990-1991 cold seasons.

2.5  CSTPS

The algorithm developed by Czys et al.
(1996), hereafter referred to as CSTPS, was
developed to distinguish primarily between ice
pellets and freezing rain environments by
predicting the ice portion of a single ice sphere as
it descends to the ground through a given
thermodynamic profile.  We made minor
modifications to this algorithm to also predict
snow and rain as well.

Precipitation type is determined primarily by
computing the ratio, τ, of the time that an ice
sphere remains in the warm layer (the residence
time), and the time necessary to completely melt
the sphere: If τ= 0, then no melting occurs; If 0 <
τ < 1, then partial melting occurs; If τ ≥ 1, then
complete melting occurs.  The algorithm
determines the residence time by dividing the
warm layer depth by the terminal velocity of the
hydrometeor (assuming the vertical velocity of
the air is zero).  We used an initial ice sphere
radius of 400 microns, as determined by Czys et
al. (1996) using radar reflectivity data during a
U.S. ice storm.  The algorithm estimates the time
that is needed to completely melt the particle
from a balance between the release of latent heat
from melting and the rate of heat transfer through
its liquid water shell.  It uses three characteristics
of the elevated warm layer: average depth,
average pressure, and average Tw, to determine
the melting time.  In this study we do not require
an elevated melting layer in order to use this
algorithm since we believe that the physical
processes upon which the algorithm is based
also occur in surface-based melting layers.

According to the CSTPS algorithm, ice
pellets occur if 0 < τ < 1 for any value of To.
Freezing rain occurs if τ > 1 and To ≤ 0˚C; if  To
> 0˚C, then rain occurs. Snow occurs if there is
no melting layer, τ = 0.

2.6  Cortinas

The Cortinas algorithm, like CSTPS,
attempts to determine if a single frozen
hydrometeor melts completely as it descends
through any melting layer.  Although there are
some minor differences between some of the
equations used in the Cortinas algorithm and
those used in the CSTPS algorithm, the major
difference is that the Cortinas algorithm does not
use the characteristics of the warm layer (i.e.,
depth and average temperature); instead, the
entire thermodynamic profile below 500 mb is

used to compute the melting rate of the ice
sphere that is the same size as the one used in
CSTPS.  The algorithm determines the
precipitation type based upon the size of the ice
sphere at the ground. (The large processing time
required for this algorithm prohibited its use
during PTAX; however, it was modified to
diagnosis only rain, if no warm layers existed
above the surface and To > 0˚C.

3.  PROBABALISTIC FORECASTS

In addition to producing algorithm output
during PTAX, we generated probabilistic output
to provide an estimate of the forecast uncertainty.
A probabilistic forecast for each type of
precipitation was computed using all available
algorithm output.  (Recall that algorithms 1 and 6
would not always produce output given particular
conditions described in the previous section.)
During this experiment, hourly model soundings
were available every hour at roughly 600 Eta
forecast points across the United States.  Using
these data, each algorithm produced a
precipitation type forecast.  Probabilities were
assigned to each type by using a weighted sum
of the algorithm output.  For each algorithm, A(i),
that produces a particular precipitation type, x,
the probability of that precipitation type, P(x), is

P(x)= { [wx(i) * Ax(i)] } /  wx(i) ,

where wx(i)  is the weight assigned to algorithm
A(i) for type, x.  The value of A  is 1 or 0,
depending on whether A(i) diagnosed the
precipitation type x or another precipitation type.
Only algorithms that produced output were used
in the P(x) calculation.  The weights were based
upon a preliminary evaluation of these algorithms
using observed soundings across North
American from 1976 to 1990 (Table 1) and may
not represent the most optimal weights.

Table 1.  Weights used in current study

Algorithms
1 2 3 4 5 6

Rain 1 2 1 1 1 1
Snow 1 1 1 1 2 1

Ice
Pellets

1 1 2 1 1 1

Freezing
Rain

1 2 1 1 1 1

Undeter-
mined

1 2 1 1 1 1

P
re

ci
pi

ta
tio

nT
yp

e

Mixed 1 2 1 1 1 1

In addition to the probabilistic output by
precipitation type, the most probable type at a
particular location and model valid time was



obtained by identifying the type associated with
the highest P(x).  If P(x) for one type was equal to
the P(x) for another type, then a hierarchical
ordering of snow, rain, freezing rain, ice pellets
was used to determine the most probable type.

4.  EVALUATION PROCEDURE

The forecast quality of the algorithms and
the most probable precipitation type were
assessed by constructing a standard contingency
table for each type of precipitation using model
data every three hours.  Algorithm output using
Eta forecast soundings from November 2000 to
March 2001 were compared to surface
observations of precipitation type at +/- 1 hour of
the model valid time.   Only those locations
where precipitation was observed and forecasted
were verified since the algorithms were originally
developed to be used at locations where
precipitation is occurring.  Additionally, the rain
forecasts were only verified against observations
of rain where To ≤ 5˚C, since forecasting rain at
these temperatures can be most difficult.

For the evaluation period, numerous
verification statistics were computed, namely,
probability of detection (POD), false alarm rate
(FAR), bias, threat score, Heidke skill score, and
Kuipers skill score.  Only POD and FAR will be
discussed in this paper.

5.  RESULTS

An analysis of the POD (Fig. 1) and FAR
(Fig. 2) for algorithms 2-5 and each precipitation
type shows that there is no algorithm that has the
highest (lowest) POD (FAR) for all times and all
precipitation types.  Results for the thickness
algorithm are not included in the plots since it
was only applicable to roughly 10% of the
forecasts of algorithms 2-5; however, the median
POD (FAR) values for snow, ice pellets, freezing
rain, and rain were 0.39 (0.18), 0.6 (0.95), 0.0
(1.0), and 0.88 (0.11) respectively.   Also recall
that the Cortinas algorithm only was used in this
experiment to discriminate between rain and no
rain. The plots indicate that the forecast accuracy
for rain is relatively good, whereas, the accuracy
of the ice pellet forecasts is poor.  Generally, the
forecast accuracy decreases as the forecast hour
increases, as expected.

Despite the fact that the accuracy of one
algorithm is not consistently superior to the
others, it is important to note that the most
probable type forecast ranks in the upper-half of
the algorithms for all types, except ice pellets.
This provides some evidence that ensemble, or
consensus, forecast techniques may be useful

when forecasting precipitation type, as suggested
by Brooks et al. (1996).

An examination of the probabilistic forecasts
using Eq. (1) reveals that snow, rain, and
freezing rain forecasts are usually reliable,
whereas ice pellet forecasts are not (Fig. 3).
These results also show that this forecast system
overforecasts snow and rain, and underforecasts
freezing rain and ice pellets.

An alternate method of combining model
output to provide a probabilistic forecast was also
used to evaluate the effect of different
methodologies of generating probabilistic output.
Using only algorithms 2-5, a probability of
precipitation type was created by using the
forecast relative frequency for that particular
precipitation type, similar to a linear combination
of these algorithms with all the coefficients equal
to one (hereafter referred to as the unweighted
combination).  The plot of these two types of
combinations shows that the weighted
combination did not generate probabilistic
forecasts that were more reliable than a linear
combination of algorithms 2-5 with all the
coefficients set to one, particularly for snow and
rain at midrange probability values.  The reasons
for this effect are currently under investigation.

6.  ACKNOWLEDGEMENTS

Funding for this research was provided by
UCAR/COMET, the Department of
Transportation/Federal Highway Administration,
and NOAA/National Severe Storms Laboratory
under Cooperative Agreement #NA67RJ0150.

7.  REFERENCES

Baldwin, M., R. Treadon, and S. Contorno, 1994:
Precipitation type prediction using a decision
tree approach with NMCs mesoscale eta
model.  Preprints, 10th Conf. On Numerical
Weather Prediction, Portland, OR, AMS
30–31.

Bourgouin, P., 2000: A method to determine
precipitation type.  Wea. Forecasting, 15,
583–592.

Brooks, H. E., J. V. Cortinas Jr., P. Janish, and
D. J. Stensrud, 1996: Applications of short-
range numerical ensembles to the
forecasting of hazardous winter weather.
Preprints, 11th Conf on NWP, Norfolk, VA,
AMS, 127-130.

Czys, R., R. Scott, K.C. Tang, R. W. Przybylinski,
and M. E. Sabones, 1996:  A physically
based, nondimensional parameter for
discriminating between locations of freezing



rain and ice pellets.  Wea. Forecasting, 11,
591–598.

Keeter, K., and J. Cline, 1991: The objective use
of observed and forecast thickness values to
predict precipitation type in North Carolina,
Wea. Forecasting, 6, 456–469.

Ramer, J., 1993: An empirical technique for
diagnosing precipitation type from model
output.  Preprints, 5th International Conf. On
Aviation Weather Systems, Vienna, VA,
AMS, 227–230.

Zerr, R. J., 1997: Freezing rain: An observational
and theoretical study.  J. Appl. Meteor., 36,
1647–1660.

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0 10 20 30 40 50

eta_rnalgpod.dat

eta_RN2-POD
eta_RN3-POD
eta_RN4-POD
eta_RN5-POD
eta_MPROB-POD            

PO
D

Forecast Hour

A.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0 10 20 30 40 50

eta_SN2-POD
eta_SN3-POD
eta_SN4-POD
eta_SN5-POD
eta_MPROB-POD            

PO
D

Forecast Hour

        B.

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50

eta_ipalgpod.dat

eta_IP2-POD
eta_IP3-POD
eta_IP4-POD
eta_IP5-POD
eta_MPROB-POD            

PO
D

Forecast Hour

C.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 10 20 30 40 50

eta_zralgpod.dateta_ZR2-POD
eta_ZR3-POD
eta_ZR4-POD
eta_ZR5-POD
eta_MPROB-POD            

PO
D

Forecast Hour

        D.

Fig.  1.  POD scores for (a) rain, (b) snow, (c) ice pellets, and (d) freezing rain, using 3-hrly Eta model output
from all 0 and 12 UTC runs between November 2000 and March 2001 (roughly 190,000 forecast points). The
algorithm number is indicated in each plot as well as the most probable (MPROB) output.
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Fig.  2.  FAR scores for (a) rain, (b) snow, (c) ice pellets, and (d) freezing rain for same data in Fig. 1.
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Fig 3.  Reliability diagram combining all algorithms
with weights (S, ZR, RN, IP) and without weights (-
ETA).  Dashed lines indicate unweighted forecasts.
Thick solid line indicates perfect reliability.


