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1. INTRODUCTION

It has been shown that the single-point probability density
functions of the data of certain cloud properties, such as
cloud optical depth, are positively skewed and resemble
the probability density functions of a log-normal random
variable (e.g. Barker et al., 1996). There is also evidence
that, for certain spatial scales, the two-point statistics are
such that the energy spectrum Ek satisfies a power-law
relation, with scale invariant exponent β lying between 1
and 3, i.e. Ek ∝ k−β , 1 < β < 3, where the energy
spectrum is the modulus squared of the Fourier transform
of the data, and k is the wave number.

A Gaussian random field with any desired energy
spectrum may be easily generated using Fourier-space
filtering due to the fact that the Gaussian distribution is
stable (i.e., the sum of any number of Gaussian random
variables is a Gaussian random variable). A log-normal
simulation may then be generated by exponentiating this
Gaussian random field. However, a log-normal field gen-
erated in this manner will not have the same energy spec-
trum as the original or ‘mother’ Gaussian field. In fact, in
general, the form of the energy spectrum will also be af-
fected (e.g. if the energy spectrum of the Gaussian field
satisfies a power-law, then the log-normal field will not).

Ideally, it would be possible to specify a target en-
ergy spectrum, and have a method to analytically com-
pute the energy spectrum of a mother Gaussian field that
will lead to a log-normal field with this target energy spec-
trum. This approach is taken by Evans et al. (1999) in
the case where an auto-correlation function, which de-
pends only on the distance between the field values, can
be specified. Thus, the technique of Evans et al. (1999) is
limited to the simulation of stationary fields. In the case of
scaling random fields, stationarity can be satisfied by re-
stricting β < 1, or alternatively, by introducing an integral
scale (a “scale break”) beyond which the variance does
not increase. (see, e.g. Davis et al., 1994; Frisch, 1995).

Below, we outline a technique that can be used to
generate non-stationary scaling log-normal discrete ran-
dom fields with scale invariant exponents in the range 1 <
β < 3 (i.e. discrete random fields with log-normal single-
point statistics and energy spectra that satisfy Ek ∝ k−β,
1 < β < 3). The random fields generated using this
new technique are useful for the simulation of cloud data,
when, for instance, the origin of a possible scale break
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is itself the topic of investigation (see, e.g. Lewis et al.,
2002).

We extend the range of validity to 1 < β < 3 by using
a simple iterative method to numerically approximate the
appropriate energy spectrum for the Gaussian field. The
iteration produces a sequence of Gaussian random fields,
where the difference between the target energy spectrum
(for the log-normal field) and the energy spectrum of the
exponentiation of a field in the sequence is used to gen-
erate the energy spectrum for the next Gaussian field in
the sequence (i.e. the next iterate). The main assumption
of the method is that the exponentiation of the Gaussian
field does not substantially alter the form of the energy
spectrum. This is a valid assumption when the variance
of the Gaussian field is not large, which is the case of
interest for cloud statistics.

In Section 2, we describe the procedure for gener-
ating Gaussian random fields. We introduce the iterative
method for simulating scaling log-normal random fields
in Section 3, and discuss implementation in Section 4.
Here, the variance range for which convergence occurs is
also discussed. In Section 5, some results of the method
are presented.

2. GAUSSIAN RANDOM FIELDS

Our method for generating scaling log-normal simula-
tions requires the exponentiation of Gaussian random
fields. Therefore, in this section, we describe the pro-
cess of simulating a discrete random field that has iden-
tically distributed single-point Gaussian statistics and a
pre-specified energy spectrum. Because the Gaussian
distribution is stable, the result of filtering a Gaussian ran-
dom field in Fourier-space is a Gaussian random field.
Thus, Fourier-space filtering can be used to generate a
Gaussian random field with an energy spectrum of any
form.

The steps involved in creating a discrete Gaussian
random field f(xn) ≡ fn (where xn, n integer, are the N
discrete locations of the field values in real space), with
mean µ and variance σ2, are:

1. Create an uncorrelated Gaussian noise, g n, with
mean µ and variance σ2.

2. Compute the discrete Fourier transform of gn to ob-
tain the Fourier coefficients ĝk, where k is the wave
number. For example, for a one-dimensional field



with xn = {n : n = 0, 1, ..., N − 1},

ĝk =

N−1�
n=0

gne2πink/N , k = 0, 1, ..., N − 1.

3. Specify a noise-free function E
(t)
k that determines

the k-dependence of the desired energy spectrum,
and is normalized so that the proper variance σ 2 is
maintained (see below).

4. Filter the Fourier transformed noise ĝ k with
�

E
(t)
k

by simply multiplying to obtain f̂k. That is, f̂k =

ĝk

�
E

(t)
k .

5. Compute the inverse Fourier transform of f̂k to pro-
duce fn, the Gaussian random field with the de-
sired energy spectrum, which will be 〈| f̂k|2〉 =

〈|ĝk

�
E

(t)
k |2〉 = 〈|ĝk|2〉E(t)

k = Nσ2E
(t)
k , where

〈|ĝk|2〉 = Nσ2 is independent of k (because gn is
uncorrelated noise), and the angled braces, 〈·〉, rep-
resent an ensemble average. Thus, the energy spec-
trum of fn will, on average, be the specified function
E

(t)
k up to a multiplicative constant.

If the function E
(t)
k is not properly normalized, then

the (filtered) Gaussian random field fn will not have the
correct variance σ2. It can be shown that if the normal-
ization condition

1

N

N−1�
k=1

E
(t)
k = 1. (1)

is satisfied, the field fn will, on average, have the same
variance σ2 as the uncorrelated field gn. In addition, to
ensure that fn has, on average, the correct mean µ, we
must have E

(t)
k=0 = 1.

Note that, by specifying E
(t)
k , we are not actually

specifying the energy spectrum of the simulation, but we
are only determining an ensemble average energy spec-
trum (i.e. 〈|fk|2〉 = Nσ2E

(t)
k ). Thus, only on average will

the energy spectrum be 〈|fk|2〉, and each simulation (or
realization) will have an energy spectrum that fluctuates
about this average spectrum.

Finally, although the discussion seemed to imply that
we are generating one-dimensional fields, the process is
identical for fields of any dimension.

3. SCALING LOG-NORMAL RANDOM FIELDS

In this section, we introduce the iterative method for gen-
erating identically distributed scaling log-normal discrete
random fields. In particular, we address the issue of find-
ing the energy spectrum that a Gaussian field must have,
so that exponentiation of this field leads to a scaling log-
normal field. That is, we are looking for an ensemble av-
erage energy spectrum 〈|ĥk|2〉 for a ‘mother’ Gaussian

field h(xn) ≡ hn, such that the ‘daughter’ log-normal ran-
dom field

Hn = ehn , (2)

has energy spectrum

EH
k = 〈|Ĥk|2〉 = c2

Hk−β , (3)

where, cH and β are independent of k, and, here and
below, the hatted (discrete) functions are the discrete
Fourier transforms of the corresponding real space func-
tions, e.g. ĥk is the Fourier transform of hn.

Generate a mother Gaussian field f
(0)
n , with energy

spectrum 〈|f̂ (0)
k |2〉, which is a guess for 〈|ĥk|2〉. Calcu-

late the daughter log-normal field F
(0)
n = ef

(0)
n , and its

corresponding Fourier transform, F̂
(0)
k .

Then, the difference d̂
(0)
k between the target energy

spectrum (3) and the energy spectrum 〈|F̂ (0)
k |2〉 of the

log-normal field is

d̂
(0)
k = 〈|Ĥk|2〉 − 〈|F̂ (0)

k |2〉. (4)

Expanding Hn in a Taylor series, we have Hn =
ehn = 1 + hn + h.o.t., where h.o.t. = higher order terms
in hn. If a similar expansion is assumed for F

(0)
n , then,

due to the linearity of the Fourier transform, we have, to
within a constant factor,

〈|Ĥk|2〉 − 〈|F̂ (0)
k |2〉 = 〈|ĥk|2〉 − 〈|f̂ (0)

k |2〉 + h.o.t. (5)

If it is assumed that the nonlinearity introduced by ex-
ponentiating the Gaussian random field is small (i.e. if
hn and f

(0)
n have small magnitude everywhere), then the

higher order terms can be ignored. That is, to a linear
approximation, the difference in the energy spectra of the
daughter log-normal fields is equal to the difference in
the energy spectra of the corresponding mother Gaus-
sian fields. Rearranging the terms in (5), and using (4),
we obtain

〈|ĥk|2〉 = 〈|f̂ (0)
k |2〉 + d̂

(0)
k + h.o.t. (6)

This suggests that a possible better approximation for
〈|ĥk|2〉 is 〈|f̂ (1)

k |2〉 which satisfies

〈|f̂ (1)
k |2〉 = 〈|f̂ (0)

k |2〉 + d̂
(0)
k . (7)

However, more generally (i.e. if the higher order
terms are not negligible), d̂

(0)
k can be used to define a

‘search direction’. Thus, the new approximation is made
by taking a ‘step’ in the search direction. That is, 〈| f̂ (1)

k |2〉,
the updated approximation to 〈| ĥk|2〉, could be given by

〈|f̂ (1)
k |2〉 = 〈|f̂ (0)

k |2〉 + ∆(0)d̂
(0)
k , (8)

where 0 < ∆(0) ≤ 1 is the step size (independent of
k), that is chosen small enough so that d̂

(1)
k = 〈|Ĥk|2〉 −

〈|F̂ (1)
k |2〉 is smaller (in some sense) than d̂

(0)
k , and chosen

large enough so that a reasonable rate of convergence is
attained, where 〈|F̂ (1)

k |2〉 is the energy spectrum of the



field F
(1)
n which is generated by exponentiating the Gaus-

sian field f
(1)
n with energy spectrum 〈|f̂ (1)

k |2〉. This idea
is similar to the standard line search methods for finding
extrema of nonlinear multivariate functions.

A series of such approximations leads to an iterative
method:

〈|f̂ (j+1)
k |2〉 = 〈|f̂ (j)

k |2〉 + ∆(j)d̂
(j)
k , (9)

where
d̂
(j)
k = 〈|Ĥk|2〉 − 〈|F̂ (j)

k |2〉. (10)

For this method to succeed, it is not necessary for the
linear approximation to be ‘valid’; it is only necessary that
the iterations converge. The method will work if the error
d̂
(j)
k in the energy spectrum of the daughter log-normal

field has the same sign as 〈|ĥk|2〉 − 〈|f̂ (j)
k |2〉, the error in

the energy spectrum of the corresponding mother Gaus-
sian field.

4. IMPLEMENTATION

Scaling log-normal simulations can be generated using
the following algorithm. Some implementation issues are
discussed below.

• Choose a first guess 〈|f̂ (0)
k |2〉 = c2

fk−β of the en-
semble average energy spectrum 〈|hn|2〉 for the final
mother Gaussian field.

• Begin loop with j = 0:

1. Using the procedure described in Section 2, gener-
ate a Gaussian random field f

(j)
n with the desired

µ and σ2, and with ensemble average energy spec-
trum 〈|f̂ (j)

k |2〉. In particular, set E
(t)
k = C2〈|f̂ (j)

k |2〉,
where C2 is a constant that is determined from the
normalization condition (1).

2. Calculate F
(j)
n = ef

(j)
n , and |F̂ (j)

k |2, the energy spec-
trum of F

(j)
n .

3. Approximate 〈|F̂ (j)
k |2〉, the ensemble average of

|F̂ (j)
k |2 by performing a least-squares fit of a poly-

nomial of degree l to the graph log 10

�
|F̂ (j)

k |2
�

vs.

log10 k. Note that if the energy spectrum were
power-law, then this log-log plot would be linear
(polynomial of degree 1). It was found that polyno-
mials of degree 5 were both able to capture the de-
viations from power-law of |F̂ (j)

k |2, as well as, able
to smooth out the fluctuations due to realization to
realization variability.

4. Find the search direction d̂
(j)
k = 〈|Ĥk|2〉 − 〈|F̂ (j)

k |2〉,
where 〈|Ĥk|2〉 = c2

Hk−β is the target energy spec-
trum (for the final log-normal simulation), β is the
scale invariant exponent, and cH is a constant (see
below for the method used to determine cH ).

5. Set the energy spectrum for f
(j+1)
n , the next iterate

Gaussian field: 〈|f̂ (j+1)
k |2〉 = 〈|f̂ (j)

k |2〉 + ∆(j)d̂
(j)
k ,

where 0 < ∆(j) ≤ 1 is the step size.

6. If d̂
(j)
k is larger than some tolerance, set j = j + 1,

and go to step 1 of the loop. Otherwise, set J = j,
and end loop.

• End loop.

• The final log-normal simulation is F
(J)
n which has en-

ergy spectrum 〈|F̂ (J)
k |2〉 ≈ c2

Hk−β.

To avoid the technical issues involved in computing
the theoretical value of the constant cH , it is determined
empirically. In particular, cH is chosen from a linear fit

to the graph log10

�
|F̂ (j)

k |2
�

vs. log10 k. This leads to in-

creased stability of the method. Note that it is the normal-
ization of the ‘mother’ Gaussian field, and not c H , that
is necessary for ensuring that the desired single-point
statistics are obtained.

In the generation of the mother Gaussian fields, the
same uncorrelated noise field (g(x) of Section 2) should
be used throughout. This ensures that ‘realization to re-
alization’ fluctuations, that cause small variations in the
estimated energy spectra, do not effect the convergence.

With a very simple determination of ∆ (j) and the first
choice 〈|f̂ (0)

k |2〉 given above, it was found that the method
converged for variances σ2 up to 9. Due to issues asso-
ciated with changes of magnitude, convergence was also
slightly dependent on the value of µ. However, conver-
gence was obtained for µ as high as 10. These ranges
for the parameters were deemed to be sufficient for our
purposes. However, if increased ranges are needed,
more sophisticated means of choosing ∆(j) and 〈|f̂ (0)

k |2〉
should lead to a significant increase in the the range of
parameters for which convergence can be obtained.

As for the Gaussian fields generated using the pro-
cedure in Section 2, the method described in this sec-
tion can be used to produce random fields of any dimen-
sion. Also, note that the random fields generated with
Fourier methods are periodic. Thus, for more realistic
simulations, one can subsample the original simulation
(e.g. choose for the final simulation a part of size N/4
from the original field of size N ).

Finally, although no tests have been performed, this
method could be used to generate log-normal simulations
that are not scaling. For instance, it may be possible to
generate log-normal fields with multiple scaling regimes.

5. RESULTS

In this section, the results of a sample generation of a
log-normal scaling simulation are presented. Figure 1
contains log-log plots of the energy spectra at the first
iteration. It can be seen that the exponentiation of the
Gaussian field has a roughening effect, i.e. the slope (on
the log-log plot) of |F̂ (0)

k |2 is smaller than the slope β of
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Figure 1: The energy spectra at the first iteration. The average

energy spectrum 〈|F̂ (0)
k |2〉 is found by fitting a polynomial to the

energy spectrum |F̂ (0)
k |2 of the first guess log-normal field. The

straight lines are the target energy spectrum, EH
k = 〈|Ĥk|2〉,

and the first guess 〈|f̂(0)
k |2〉.

the target energy spectrum EH
k = 〈|Ĥk|2〉. The most sig-

nificant deviation of |F̂ (0)
k |2 from the target EH

k is at small
wave numbers; there is a more significant roughening at
the large scales than at the small scales. Figure 2 shows
the ‘final’ energy spectrum of the two-dimensional scal-
ing log-normal simulation of size 512 × 512 that is shown
in Figure 3. For additional tests of the generating tech-
nique, along with an implementation in Matlab, see Lewis
and Austin (2002).
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Figure 2: The energy spectra at convergence. The energy

spectrum of the final simulation (see Figure 3) is |F̂ (J)
k |2. Also

plotted are the target energy spectrum 〈|Ĥk|2〉 and the energy

spectrum of the final Gaussian field 〈|f̂(J)
k |2〉.
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