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INTRODUCTION

Climate- and regional models solve the dynamics of the
atmosphere with a resolution ∆ of 10 km or more. They
use parameterizations to incorporate the effects of turbu-
lence in the atmospheric boundary layer (ABL). Fluxes,
entrainment and dissipation are associated with charac-
teristic time-scales T . They are often constructed from
characteristic length scales L for these quantities (tem-
perature, wind velocity, humidity, chemicals) and a char-
acteristic turbulent velocity. The spatial resolution ∆ of
the regional model determines where the spectra are trun-
cated and which parts of the dynamics should be param-
eterized. Ratio ∆ � L characterizes the importance of these
subgrid-parameterizations. With increasing computational
resources, the regional models are refined and the spectral
truncation induced by the model resolution shifts towards
the turbulent regime. Estimation of L from measurements
is therefore of increasing importance for understanding the
dynamics of the ABL (Nicholls and LeMone 1980). In
many cases L equals the height of the boundary layer, but
sometimes it does not: in Large Eddy Simulations of a
convective boundary layer Jonker et al. (1999) found that,
for certain scalar entrainment ratios, the growth of the L
for scalars did not follow the growth of L for velocity and
temperature.

In this paper we will discuss the estimation of an integral
time-scale T from a given signal which via Taylor’s hy-
pothesis gives integral length L. The integral time scale is
often defined in terms of an autocovariance function that
is given by the time-average of shifted product of observa-
tions x �nx �n � m. We will show that application of this defini-
tion leads to results that are difficult to interpret. One prob-
lem for this definition is the influence of the subtraction of
the estimated mean (Sreenivasan et al. 1978) or a trend cor-
rection (Kaimal and Finnigan 1994, p.276). Due to these
difficulties, this definition is not used in practice in this
pure form. Instead, an integral time scale is obtained using
the truncated autocovariance function, or, equivalently, the
windowed periodogram or smoothed Fast Fourier Trans-
form (FFT). The smoothing is highly arbitrary and there-
fore estimation of T via FFT is a subjective business.

To eliminate this arbitrariness, a new estimator is pre-
sented. It is based on recent results in the field of time
series analysis (Broersen 2002). These results have been
incorporated in a Matlab Toolbox ARMASA, that can be
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downloaded freely (Broersen 2001). This new estimator is
compared to classic methods based on shifted-products or
FFT in simulations as well as on experimental data.

1. DEFINITIONS

Our analysis starts at the point where a one-point measure-
ment has been done in the atmosphere and a time-series is
available for analysis. We are dealing with sampled sig-
nals and therefore all definitions given here are in discrete
time. The sampling time is denoted Ts; The number of
observations available is N; the total measurement time
is Tm � NTs. It is assumed that the signal is a stationary
stochastic signal x � (turbulence) plus a deterministic addi-
tive or multiplicative trend g (e.g. daily cycle):

xn � x �n � gn or xn � x �n � gn � (1)

Only trends with a clear physical interpretation are esti-
mated and eliminated. The autocovariance function R 	 m 

of the remaining turbulent time-series is given by:

R 	 m 
 � E � x �nx �n � m � � (2)

The autocorrelation function ρ 	 r 
 is the autocovariance
function normalized by the signal variance σ2. In the fre-
quency domain, a stochastic signal can be described by
the power spectrum h 	 f 
 . The definition of the power
spectrum can be found in Priestley (1981). An important
derived result is the Wiener-Khintchine theorem, which
states that the power spectrum h 	 f 
 is related to the au-
tocovariance function R 	 m 
 by the Fourier Transform.

Several time scales can be defined that characterize the
autocorrelation function. A frequently-used characteristic
time scale is the sum of the autocorrelations:

T  1 � � Ts

� ∞

∑
r ��� ∞

ρ 	 r 
 � (3)

This characteristic time scale is proportional to the power
spectrum at frequency f � 0, and to the asymptotic expres-
sion for the variance of the estimated mean µ̂ (Priestley
1981, p.320):

T  1 � � h 	 0 

σ2 � Tm

σ2 var 	 µ̂ 
 � (4)

Another integral time scale representing the correlation
length is defined as the sum of squares of the autocorre-
lation function:

T  2 � � Ts

� ∞

∑
r ��� ∞

ρ 	 r 
 2 (5)



All non-zero autocorrelations give a contribution to this
time scale. This integral time scale is proportional to
the asymptotic expression for the variance of the esti-
mated variance σ̂2 for normally distributed signals (Priest-
ley 1981, p.326). One must keep in mind that T is not
the integral timescale in the atmosphere, but the character-
istic time scale in the measured time-series. With use of
the mean velocity this time T will give the integral length
scale L in the atmosphere.

2. ESTIMATORS

For the current analysis, it is assumed that the deterministic
trend g in x consists only of a constant mean value µ. The
standard estimate of the mean is denoted µ̂. The signal re-
maining after subtraction of the estimated mean is denoted
x � � xn � µ̂. We will now discuss two types of estimators:
The shifted-products or FFT-based estimator and the esti-
mator based on time series models. The integral time scale
T  1 � will be used as an example in the definitions. Estima-
tors for the integral time scale T  2 � can be formulated in a
similar fashion.

SHIFTED PRODUCTS ESTIMATORS

This class of estimators is based on the Blackman-Tuckey
(BT) method for spectral estimation. It uses the frequency
domain expression for the integral time scale (4). The BT
estimate for the spectrum is based on the periodogram or
raw FFT, given by the absolute square of the Fourier Trans-
form of the signal x � :

I 	 f 
 � Ts

�����
N

∑
n � 1

x � e � i2π f n

�����
2 � (6)

The straightforward estimate for the integral time scale
is to take the periodogram at f � 0. However, the peri-
odogram at f � 0 is exactly equal to zero, independent
of the characteristics of the process at hand: I 	 0 
 � 0.
To avoid this problem, we have to use the smoothed pe-
riodogram. This means that a weighted average is taken of
neighboring periodogram estimates:

ĥ 	 f 
 � � � 1 � 2Ts

F ��� 1 � 2Ts

I 	 F 
 W 	 f � F 
 dF � (7)

Another argument for smoothing is that it reduces the er-
ratic behavior of the raw periodogram. A typical example
of a weighting function is the Daniel window, where the
average of a number of neighboring periodogram points

is taken. The resulting Blackman-Tuckey estimate T̂  1 �BT is
given by the smoothed periodogram at f � 0:

T̂  1 �BT � ĥ 	 0 
 � � � 1 � 2Ts

F ��� 1 � 2Ts

I 	 F 
 W 	 F 
 dF � (8)

The Blackman-Tuckey estimate is representative for a
larger category of estimators. The BT estimate is equal

to a weighted sum of estimated covariances:

T̂  1 �BT � rt

∑
r ��� rt

w 	 r 
 R̂SP 	 r 
 � (9)

where R̂SP is the shifted-products estimator:

R̂SP 	 r 
 � 1
N

N ��� r �
∑
n � 1

x �nx �n ��� r � � (10)

Similar to the frequency domain approach, it would seem
natural to take the sum over all available covariance esti-
mates. However, as in the frequency domain approach, this
yields a value of exactly zero, independent of the charac-
teristics of the process at hand:

N

∑
n ��� N

R̂SP 	 r 
 � 0 � (11)

Therefore, this is not a useful estimate for the integral time
scale. This result shows that it is important to make a clear
distinction between the definition and an estimate of the in-
tegral time scale. The integral time scale is defined in terms
of the autocovariance function, given by the expectation of
a shifted product x �nx �n � m (equation 2). The estimate (11)
is based on an estimate of the autocovariance, given by the
time average of x �nx �n � m over the given set of observations.

The BT estimate is closely related to the Bartlett method.
In this approach, a less erratic spectral estimate is ob-
tained by dividing the data into M blocks of equal size
NB � N � M. From each block m, the periodogram I  m � is
obtained. Similar to the smoothed periodogram, this re-
sults in a smoother spectral estimate. The resulting integral

time scale T̂  1 �B is the sum of the averaged periodogram es-
timates:

T̂  1 �B � Ts

σ̂2

1
NB

NB

∑
m � 1

I  m � 	 0 
 � (12)

The Bartlett estimate for T  1 � is equal to the blocking es-
timate. The blocking estimate is based on the third inter-
pretation of the integral time scale as the variance of the
estimated mean (equation 4) (Broersen 1998). An estimate
of the mean µ̂m is obtained from each block. The sample
variance of these m estimates provides an estimate for the
variance of the estimated mean:

T̂  1 �B � Tm

σ̂2 �var 	 µ̂ 
 � Tm

σ̂2

1
M

M

∑
m � 1

	 µ̂m � µ̂ 
 2 � (13)

We will now compare the BT and the Bartlett estimators.
A first remark is that they are closely related. Although
not exactly equal, the BT estimate with lag window size rt

is practically equal to the Bartlett estimate for block size
NB � rt :

T̂  1 �B � T̂  1 �BT (14)



A preference can be expressed for the Blackman-Tuckey
estimate, because the BT estimator uses all products xnxn � r

present in the signal to get an estimate of R 	 r 
 . With the
Bartlett estimate, some contributions xn and xn � r are not
in the same block and therefore they are not used. With
the Welch method of spectral analysis, overlapping blocks
are used (Stoica and Moses 1997). With this method, too,
there are discarded products xnxn � r.

The same conclusions can be drawn for the other integral
time scale, T  2 � . A minor difference is that no exact equiv-
alence exists between the Bartlett estimate and the block-
ing estimate for T  2 � .
Some disadvantages are associated with the shifted-
product or FFT-based estimators. Note that we can for-
mulate these problems either in the time domain or in the
frequency domain, since the BT estimate has both a time
domain and a frequency domain interpretation. First, the
window size or ’amount of smoothing’ of the periodogram
is chosen by the experimenter. This problem is found in
the BT approach, but also in the Bartlett approach. Here,
the amount of smoothing is given by the number of blocks.
Second, the covariance estimate (10) contains a triangular
bias. Finally, not all power spectra can be modelled accu-
rately. For instance, power spectra containing both sharp
peaks and flat regions are not accurately modelled. If no
or little smoothing is applied, the sharp peak is modelled
accurately, but the spectrum in the flat region remains er-
ratic; if more smoothing is applied, the flat region is more
accurate but the sharp peak is smoothed out.

TIME SERIES MODELS

We just showed that using all shifted-products estimates
for the autocovariances to obtain an estimate the integral
time scale leads to a meaningless result (equation 11). This
is a consequence of the fact that the number of estimated
parameters is equal to the number of observations N: N � 1
correlations ρ̂ 	 1 
�� ����� � ρ̂ 	 N � 1 
 and the mean µ̂. To get a
practical answer, the number of parameters used to de-
scribe the data has to be reduced.

A promising approach is to use statistical model inference.
With statistical model inference a parametric time series
model is determined automatically by the data. Recently,
a reliable time series algorithm has been developed based
on the Autoregressive (AR), Moving Average (MA) and
the combined ARMA models (Broersen 2001). This AR-
MAsel algorithm is based on statistical order selection,
type selection and parameter estimation. This alternative
for the FFT-based estimators does not have the disadvan-
tages mentioned in the former section (Broersen 2002).
The method to estimate model type, order and parameters
(ARMAsel) stops admitting more parameters when inclu-
sion of a new parameter would not lead to significantly
more knowledge about the signal.

With an ARMA(p,q) model, a signal x is modelled as a
white noise signal ε filtered by a rational filter:

xn � a1xn � 1 ��� � apxn � p � εn � b1εn � 1 ��� � bqεn � q � (15)

Parameters a1 � ����� � ap are the autoregressive (AR) param-
eters; the number of AR parameters is AR order p.
Parameters b1 � ��� � bq are the Moving Average (MA) pa-
rameters; q is the MA order. An AR(p) model is
a model with q=0; a MA model is a model with
p=0. The ARMAsel routines, with which we esti-
mated parameters ai and bi, can be downloaded from
http://www.tn.tudelft.nl/mmr.

All process characteristics can be derived from the
ARMA-parameters. The power spectrum h is given by

h 	 f 
 � σ2
ε

2π � 1 � ∑q
k � 1 bie � jωk

�
2

� 1 � ∑p
k � 1 aie � jωk

�
2 � (16)

Similarly, the autocorrelation function and the integral
time scales T  1 � and T  2 � can be calculated directly from
the parameters (Broersen 1998).

3. COMPARISON

The theoretical analysis of estimators is based on the com-
parison with the Cramèr-Rao lower bound for the parame-
ter accuracy. If the true process is an ARMA-process, the
lower bound is closely approximated with time series mod-
elling (Broersen 1998). No such optimality result can be
derived for the shifted-product- or FFT-based estimators.

To compare time series modelling and the shifted-product
estimator, we simulated N observations of a turbulent pro-
cess with a -5/3 slope in the power spectrum to mimic an
inertial subrange:

h 	 f 
 � γ
1

1 � � f
0 ! 01 " 5 � 3 � (17)

where γ is a normalizing factor. The signal is sampled with
sampling frequency fs � 1. The true integral time scales
are T  1 � � 26 and T  2 � � 11.

For the Blackman-Tuckey approach, a window type and
window size has to be chosen. Here, we have used the
Parzen window (Priestley 1981) with window size N � 10.
This corresponds to smoothing the periodogram by aver-
aging 10 neighboring points. In terms of the Bartlett es-
timate, this corresponds to dividing the data into M � 10
blocks.

In the table the root mean square error is given for the two
estimators. The integral time scale has been estimated for
a varying number of observations N. The automatically se-
lected ARMAsel model provides the most accurate result
for both integral time scales. It could be argued that a bet-
ter result could have been obtained with a different choice
for the window size. However, a more accurate window
size can only be chosen if additional information is avail-
able about the process at hand. Conversely, the result ob-
tained with the ARMAsel algorithm has been obtained us-
ing the data only.
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Figure 1: A comparison of the Blackman-Tuckey estimate and the ARMAsel estimate of the power spectrum from N = 5000 observations
of simulated data (a) and N = 5000 observations of experimental data (b).

N 500 1000 5000 10000
BT 12.0 / 6.6 7.7 / 5.5 9.6 / 4.9 7.8 / 4.6
ARMAsel 10.7 / 3.5 7.9 / 2.4 5.1 / 1.3 4.6 / 0.9

Table 1: The root mean square error of the estimated integral time
scales T # 1 $ and T # 2 $ for a varying number of observations N. The
results are given for the Blackman-Tuckey estimate (BT) and AR-
MAsel time series analysis (average of 100 simulation runs)

An example for the power spectra estimated from a single
set data is given in figure 1. The simulation result (fig-
ure 1a) shows that if a -5/3 slope that is present in the true
spectrum it is modelled very accurately with time series
modelling. The two estimators have also been applied to
experimental data (figure 1b). These data are vertical ve-
locity measurements of a stable boundary layer, obtained
at the Cabauw site, The Netherlands. The behavior of the
estimated power spectra is similar to that found in the sim-
ulations.

4. CONCLUSION

With ARMAsel we are capable of estimating the inte-
gral time-scale T in a series of one-point measurements
without the draw-backs of classic methods. There is
no subjective influence of choosing a degree of smooth-
ing, nor does the method suffer from the bias that is
known to affect FFT-based estimates for T . The inte-
gral time-scale can be used via Taylor’s hypothesis to
estimate the integral length scale L of turbulence in the
ABL. The ARMAsel routines can be downloaded from
http://www.tn.tudelft.nl/mmr.
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