4.5. WDSS-II: An Extensible, Multi-source Meteorological
Algorithm Development Interface

V Lakshmanan*
National Severe Storms Laboratory & University of Oklahoma

Abstract

We describe the requirements — scientific, technical and
economic — of scientists and engineers who are devel-
oping new meteorological algorithms and products. We
argue that these requirements call for quick and ready
access to multiple, disparate sources of data (includ-
ing the outputs of other algorithms) in a uniform man-
ner. We also argue that developer convenience dictates
that it be possible to develop and test algorithms using
data from an operational system without impacting that
system. For efficiency, algorithm developers should be
able to run multiple instances of any algorithm and to
compare the performances of the different instances. It
should be possible to easily visualize the intermediate
and final outputs of the algorithms alongside the origi-
nal data and the outputs of other algorithms. Applica-
tion Programming Interfaces (APIs) geared towards al-
gorithm development should provide all of these features
to create a robust community of meteorological algorithm
developers.

In this paper, we describe an API that meets these de-
veloper needs. Other papers in this session describe
new algorithms that have been developed using this
API, called the Warning Decision Support System — In-
tegrated Information (WDSS-II). These algorithms illus-
trate different facets, both of the requirements of new al-
gorithms and of the capabilities of the API.

*Corresponding author address: lakshman@nssl.noaa.gov

1. Future algorithms’ requirements

Algorithms in development in the meteorological com-
munity range from radar-only algorithms to algorithms
that use data from multiple radars to algorithms that in-
tegrate information from multiple sensors and sources.
At the same time, there are several sources of any one
data stream. For example, radar data can be obtained
through the CRAFT project and Unidata’s Local Data
Manager (LDM), through NSSLs RIDDS system, through
the ORPG BDDS or through AWIPS. In addition, radar
data may already be present in the user’'s environment
on disk or obtained through archives from NCDC.

Who develops algorithms? Algorithm developers
range from applied research scientists at various re-
search laboratories and graduate students at research
universities to meteorologists at weather forecast offices.

The final and intermediate outputs of the algorithms
developed by these developers range from gridded prod-
ucts to vector products to tabular data.

What kinds of requirements are posed on an algo-
rithm development environment by such a varied and
disparate group and by such an assortment of algorithm
inputs and outputs?

The Warning Decision Support System has been re-
designed to be an excellent algorithm-development plat-
form. We considered the needs of an algorithm devel-
oper and designed the system around that. Some of the
requirements we identified, and the way we met those
requirements follow.

a. Inexpensive

The development platform must be inexpensive and easy
to set up and get started. Consequently, the WDSS-II

system is available for Linux (Solaris versions are also
available). We use free software tools for compilers, GUI
toolkits, XML parsers, source code configuration, etc.

The only hardware requirement for WDSS-II is a per-
sonal computer (PC) with a graphics card. Users have
bought algorithm development machines for as little as
$1000.

b. Open, Extensible and Standard Data Formats

The data formats used should be open, extensible and
standard. Open formats allow the data to be ported to
different platforms and architectures. Extensible formats
allow the easy creation of new products, a must in an
algorithm development environment. Standard formats
allow the examination and verification of input, interme-
diate and output format with external tools.

The native format for the WDSS-II system is XML Bray
et al. (2000) for small chunks of data (such as tabular
data) and Unidata’s NetCDF Jenter and Signell (1992)
for array-based data. Use of these open, extensible
and standard data formats has made it possible to eas-
ily accomodate new algorithm outputs. Thus, WDSS-
Il algorithms have ingested and output disparate data
sources, such as multi-sensor SCIT, supercell identifi-
cation, TDWR data, and advected fields with no source
code modification to the underlying codebase. There are
libraries freely available to read and write these formats.
There are tools available (besides WDSS-II) to examine
the output files. In addition to these native data formats,
the WDSS-II system has been enhanced by specialized
ingest classes for ORPG, RIDDS and some experimen-
tal formats. These libraries may be configured out of a
deployed system.

c. Connect to Real-time system

Some of the proposed algorithm development environ-
ments require the algorithm to be present on the same
machine as the operational (or quasi-operational) sys-
tem that provides it data, with the operational system
controlling the algorithm. While this is a desirable situ-
ation in an operational setting, it is very inconvenient for
a developer. It should be possible for an algorithm devel-
oper to connect to a real-time system without having to
be responsible for maintaining that real-time system.
WDSS-I1I algorithms typically receive data from remote

locations. Thus, it is easy for an algorithm developer to
get going — they don’t need to somehow maintain a data
feed. Through CRAFT and LDM, we do provide the ca-
pability for the user to have a clone of the entire system
on the desktop.

d. Archive and Real-time

Algorithms should not be developed exclusively on
archive cases and then expected to work in real-time.
To ensure that algorithm developers test their algorithms
on a real-time stream, it should be possible to switch be-
tween archive sets and real-time data streams quickly
and easily.

The algorithm developer should not be required to run
a data feeding algorithm to get data to her algorithm —
the algorithm should be able to run off data on remote
machines.

WDSS-II algorithms can switch from archive to real-
time easily. They usually achieve this via a command
line option to the algorithm ("-r"). Except for multisensor
simulations, where a synchronizing data feeding process
is required, WDSS-II algorithms can be directly run on an
archived case on disk

e. Simulate Multi-Sensor Streams

It should be possible to easily simulate multi-sensor
streams from archive. WDSS-II provides a tool that does
this simulation, so that the algorithm processes the data
as if it were real-time. The tool, like all WDSS-II algo-
rithms and tools, handles data sources of different types
and on different platforms, so that the user does not need
to physically colocate all the archive sets.

To save bandwidth, the transmitted data is usually
compressed, and uncompressed on the fly by the data
ingest API.

f. Part of System, if required

While algorithms are developed and initially tested in iso-
lation, at some point, the developer wants the algorithm
to be tested in a real-time system. Thus, it should be
possible to incorporate developed algorithms into a real-
time system of algorithms, or to run them independently.

WDSS-II algorithms can currently be packaged into a
real-time system using base data obtained using LDM —

Procuct Database

ORPG product
storage

=l

Motification
databaze

G

4D data

Figure 1: Architecture of a WDSS-II algorithm inside the
ORPG. Compare with Figure 2 — what changes is how
the ingest is done.

this is what we are doing at NSSL, and in the Norman
and Jackson Forecast Offices.

But what about the ORPG? WDSS-II was able to pro-
vide base data and products from an ORPG to algo-
rithms. We achieved this capability by having the data
ingest APl connect and listen to the ORPG product
database and provide data and products to algorithms.
Thus, there is a path for algorithms developed in WDSS-
Il to work in a real-time system — see also Figure 1.

g. Multi-sensor and multi-source

The algorithm development environment should support
multi-sensor and multi-source ingest for algorithms. A lot
of existing algorithms can be greatly improved by incor-
porating inputs such as a nearby radar, or local environ-
ment conditions from a model.

WDSS-II integrates multi-source and multi-sensor in-
formation extremely well since it was designed with this
capability in mind.

2. [Easy Development and Testing

The development environment should live up to its de-
scription, supporting easy development and testing of
new algorithms. In the next section, we will demonstrate
some of the capabilities of the system that really help an
algorithm developer.

| |Data source

| WDSS |N0tific:ati0n
common
| acoess '
datebase
oo . ¥ e~
| Scientific Algorithm
| ! Outputs| !Notify

: Storage

T L]
| Linear Buffer |

Figure 2: Architecture of a WDSS-II algorithm. The al-
gorithm processes the abstracted four-dimensional data
that it obtains by connecting to and listening to an In-
dex. It writes out intermediate and final outputs as
NetCDF/XML files and adds information about the prod-
ucts to the Index of products.

Instead of showing possibilities, we will show case
studies of how people have actually used our system.

Shown in Figure 2 is the architecture of a new al-
gorithm in WDSS-Il. The algorithm processes an ab-
stract four-dimensional data class (such as RadialSet,
CartesianGrid, LatLonGrid, DataTable, etc.). These data
are obtained by the algorithm from an Index. The In-
dex varies by data source. For example, the Index in
an ORPG is a class that bridges the Index API to the
Product Database. The Index in a CRAFT/LDM feed is
created by a process Idm2netcdf that decodes the LDM
files. The algorithm writes out intermediate and final out-
puts as NetCDF/XML files. Finally, for every product writ-
ten out, the algorithm should add indexing information
about that product to an Index of products. In a real-time
system, the Index of products is the same as the Index
of inputs, but in an algorithm development environment
they are separate, so that the algorithm can be rerun as
many times as required on the same set of inputs.

a. Portability

The WDSS-II system was designed to ingest data from
many different data sources, and therefore abstracts out
many of the source-dependent details into base classes

that provide common APIs that the algorithms depend
on.

Different data sources typically have either a data
feeding process that provides input data as NetCDF/XML
or has a Factory that creates the appropriate Index,
builders and formatters for that data source. This entire
Factory and associated factories are located in a shared
libary. In an algorithm development environment where
the only input data is going to be ORPG data, shared li-
braries corresponding to RIDDS or satellite will never be
loaded or used. While building the system, such unused
libraries should be turned off and used packages turned
on.

Thus, it is possible to build a real-time system of al-
gorithms with minimal size. There is a large set of com-
mon classes and functionality that is always built into the
system and can be relied on by the algorithms. These
classes are either part of WDSS-II (for example, a Dat-
aConverter class that converts a RadialSet into a Carte-
sianGrid, a Location class to do earth-navigation) or are
part of the C++ Standard Template Library (sort, random
shuffle, nth element, etc.).

Comparing the algorithms in Figure 1 and 2, we see
that an algorithm developed on one data source can eas-
ily be migrated to another, since it relies only the common
functionality. One Index type and its associated builders
and formatters can be substituted for another simply from
the command line.

The algorithm run on the ORPG would be launched as:
myApp -i orpg:/export/data/orpg/productdb
-0 /data/output while the same algorithm run-
ning on LDM data would be launced as: myApp
-i xmllb:/home/ldm/data/KTLX/index.lb -o
/data/output Of course, the shared libraries avail-
able on the two systems are different, but the algorithm
source code is unmodified.

b. Flexibility of the API

Not only the APl easy to use and get started on, it
is also very flexible. Other papers in this section will
talk about rapid algorithm development (LLSD develop-
ment (Smith 2002)), about using multiple radar inputs
(multisensor algorithms (Stumpf et al. 2002)), about al-
gorithms that depend on base data as well as on other
algorithms’ outputs (Supercell (Lynn 2002)), on switch-

ing between satellite and radar inputs (KMeans (Lak-
shmanan et al. 2000)) and on new concepts (virtual
volumes (Lynn and Lakshmanan 2002) and time-based
mergers (Lakshmanan 2002)).

The final paper in this session will provide an overview
of the WDSS-Il components and future plans for the
WDSS-II API.

3. Conclusion

The WDSS-II algorithm developer API allows an algo-
rithm developer to quickly access both real-time and
archived data in a uniform manner. It allows the devel-
oper to run the algorithm without modifying operational
systems in any way. The developer is able to quickly vi-
sualize the outputs of the algorithm. We showed the flex-
ibility of the API, to handle multiple radars, multiple col-
loborative algorithms, to switch between radar and satel-
lite inputs and even to represent and provide access to
radically new ways of looking at radar data. Finally, the
API and associated tools are available for use by a com-
munity of algorithm developers with little up-front costs.

ACknOWledgement The work detailed in this paper was supported with funds from the
National Science Foundation, NEXRAD Product Improvement group at the National Oceanic and Atmospheric
Administration, the Federal Aviation Authority and the National Severe Storms Laboratory (NSSL).

The authors would like to thank Don Bailor, Karen Cooper, Charles Kerr, John Krause, Jason Lynn, Lulin
Song, Tad Thurston, Thomas Vaughan and Lingyan Xin of the University of Oklahoma and Kurt Hondl of NSSL
for many contributions to the design and implementation of the WDSS-II system.

References

Bray, T., J. Paoli, C. M. Sperberg-McQueen, and E. Maler: 2000, Extensible markup language (XML). Technical
report, World Wide Web Consortium, available at http://www.w3.org/TR/REC-xml.

Jenter, H. L. and R. P. Signell: 1992, NetCDF: A freely-available software-solution to data-access problems for
numerical modelers. Proceedings of the American Society of Civil Engineers Conference on Estuarine and
Coastal Modeling, Tampa, Florida.

Lakshmanan, V.: 2002, Real-time merging of multisource data. 21st Conference on Severe Local Storms, Amer.
Meteo. Soc., San Antonio, TX.

Lakshmanan, V., R. Rabin, and V. DeBrunner: 2000, Identifying and tracking storms in satellite images. Second
Artificial Intelligence Conference, American Meteorological Society, Long Beach, CA, 90-95.

Lynn, R.: 2002, The WDSS-II supercell identification and assessment algorithm. 21st Conference on Severe
Local Storms, Amer. Meteo. Soc., San Antonio, TX.

Lynn, R. and V. Lakshmanan: 2002, Virtual radar volumes: Creation, algorithm access and visualization. 21st
Conference on Severe Local Storms, Amer. Meteo. Soc., San Antonio, TX.

Smith, T.: 2002, A two-dimensional, local, linear, least-squares method of derivative estimates from doppler radial
velocity. 21st Conference on Severe Local Storms, Amer. Meteo. Soc., San Antonio, TX.

Stumpf, G., T. Smith, and A. Gerard: 2002, The multiple-radar severe storm analysis program for WDSS-II. 21st
Conference on Severe Local Storms, Amer. Meteo. Soc., San Antonio, TX.

