
7B.3 DEVELOPMENT OF AN “EVENTS-ORIENTED” APPROACH
TO FORECAST VERIFICATION

Michael E. Baldwin*1,2, S. Lakshmivarahan3, John S. Kain1

1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK. Also affiliated with NOAA/NSSL
2 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK. Also affiliated with NOAA/NWS/SPC

3 School of Computer Science, University of Oklahoma, Norman, OK
*Corresponding author address: Michael E. Baldwin, 
CIMMS, 1313 Halley Cir, Norman, OK, 73069  
Email: Mike.Baldwin@noaa.gov

 

1. INTRODUCTION

The goal for this work is to develop new forecast
verification techniques that provide useful information on
the accuracy of spatial fields containing high-amplitude,
small-scale features or “objects”, such as a thunderstorm
cluster which might be observed by radar or predicted by
a state-of-the-art numerical weather prediction (NWP)
model.  Traditionally, “objective” forecast verification is
performed by an automated system which compares
values of forecast and observed variables valid at the
same set of points in both time and space.  The forecast
values are compared to the observed values, and
various statistics are computed to measure the accuracy
of the forecast field.  For meteorological fields that
contain high-amplitude, small-scale features, small fore-
cast errors in phase, displacement, or time lag can pro-
duce very large differences between forecast and
observed scalar variables at specific locations.  Tradi-
tional approaches to verification may actually represent
a forecast system that never predicts small-scale, high-
amplitude features as more accurate than one that pre-
dicts realistic features (Baldwin et al. 2001).  For exam-
ple, it is possible for a thunderstorm to produce 50mm of
rain at one location, while 10km to the south no rain is
observed.  A forecast that correctly called for this high-
amplitude spatial variation in rainfall except with a south-
ward displacement error of 10km would find that the
mean absolute error (MAE) from these two locations
would be 50mm.  Another forecast that called for 10mm
at both locations would have a smaller MAE of 25mm,
but this forecast does not accurately represent the spa-
tial variation found in the observed rainfall data.  

Despite the potential for large errors at specific
points in time and space, predictions that contain  spatial
structures, scales, and amplitudes that are similar to
those observed, albeit with phase/displacement errors,
may be of considerable value to certain users. For exam-
ple, forecasters at the Storm Prediction Center (SPC)
are often faced with the following forecast problem: What
will the dominant mode of convection be tomorrow?  In

other words, will the dominant events be isolated cellular
convection or organized linear convection, or will there
be a transition from one type to another?  Due to the
uncertainty involved in forecasting these kinds of events,
the exact location and timing of their occurrence is not as
critical as determining the type of event that is likely to
occur over a general area in a given time period.  Cur-
rently, NWP models do not contain enough resolution to
explicitly predict spatial patterns of precipitation at the
scales which are of critical importance to the SPC fore-
casters.  Forecast output from future NWP models that
can explicitly predict different types of small-scale spatial
rainfall patterns to some degree of accuracy, even with
errors in timing and phase, will be of considerable value
to SPC forecasters.  However, given the problems with
“point-to-point” verification methods mentioned previ-
ously, the value of such forecasts will not be expressed
when using traditional objective methods of measuring
forecast accuracy.

On the other hand, when a person performs
“subjective” verification, by visually comparing the
forecast and observed fields, the comparison is much
less tightly focussed.  A human analyst will naturally take
errors in phase or displacement into account.  Other
attributes of the fields will also be considered, for
instance, a forecast field with spatial variation similar to
the observed field might subjectively be considered of
greater value than a forecast field with quite different
spatial variability.  In order to obtain more useful
information on the accuracy of forecasts that contain
high-amplitude small-scale features, there is a need to
develop “objective” or automated techniques that mimic,
as closely as possible, how a human subjectively
assesses the skill of a forecast field or spatial maps of
meteorological variables.

2. “EVENTS-ORIENTED” VERIFICATION PARADIGM

As a basis for the development of these new
automated techniques, the paradigm of “point-to-point”
objective verification is expanded to the verification of
features, events, or “objects” (Neilley 1993), which are
defined as meteorological phenomena.  An event or
object on a weather map can be defined as a region
containing similar meteorological or statistical



characteristics, properties, or attributes.  Examples of
attributes might be the range of values of temperature
across a region, or the minimum pressure value of a
surface cyclone (“the model is predicting a 982 mb low”).
In order to reduce the dimensionality of the problem and
to allow for easier interpretation of the results, one
should choose a set of attributes that can describe the
most important and discriminating aspects of an event in

a concise fashion.   For example, the ith forecast event
could be described by an attribute vector of m dimension

fi =  where xi, yi are the attributes

associated with the spatial location of this event

(perhaps latitude and longitude), and αi, βi,..., are

attributes that could be associated with the shape, scale,
amplitude, orientation, continuity, intermittancy, etc., of
the event.  Of course, observed events must be
described with the same set of attributes, for example,

the vector describing the jth observed event would

contain oj = .

Depending upon how the events are identified
within observed and forecast fields, one could end up
with different numbers of observed (no) and forecast (nf)

events.  For sake of explanation, assume that n=no=nf is

the number of forecast and observed events.  In order to
measure the accuracy of the forecast and quantify the
agreement between forecast and observed events, the
similarity between these events can be measured.
There are numerous possible choices of similarity/
dissimilarity measures, for example, the correlation
coefficient between fi  and oj  is an example of a

similarity measure, since the higher the correlation
coefficient is, the more similar  fi  and oj are.  Another

possible candidate would be the generalized Euclidean

distance, defined as dij = (fi - oj)
T A (fi - oj), a measure of

dissimilarity.  Here A is a weight matrix that could allow
certain attributes to have greater weight than others, due
to differences in units, relative importance, etc.  Once the
similarity measure has been chosen, overall summary
verification scores or accuracy measures could then be
obtained.  This approach to verifying events would be
analogous to the “measures-oriented” approach to
verification (Brooks and Doswell 1996).  A more
comprehensive analysis of the verification information
could also be obtained by examination of the joint
distribution of forecast and observed events, dubbed the
“distributions-oriented” approach by Brooks and Doswell
(1996).  For example, one could determine the reliability
of the forecast by determining the average observed
event given specific forecast events.  This could be
considered an extension to the verfication framework

outlined by Murphy and Winkler (1987).  However, since
we assume that the dimension of the attribute vector is
m, the joint distribution of forecast and observed events
will be a 2m-dimensional multivariate distribution and will
require significant factorization to allow for interpretation
of the results.

This section outlines the general framework that
will be followed to perform an “events-oriented”
verification.  In order to establish the identity of events
within forecast and observed fields and determine the
attributes associated with them, there is a need to
develop an automated, objective method to recognize
events by organizing those regions within the spatial field
that posses similar attributes.  In order to determine
regions within a dataset that exhibit similar
characteristics, we naturally turn to the discipline of data
mining.

3. CLASSIFICATION USING HISTOGRAM ANALYSIS

The initial goal of this work is to develop a robust
automated technique to classify significant and
interesting features within a two-dimensional spatial field
of meteorological data, such as observed or predicted
rainfall.  Analysis of such a complex data set can be
made at several levels; similiarity of the raw values of the
variables at every point in space, 2-D image processing,
spectral analysis, etc. As a first step in this multi-faceted
analysis process, we choose to classify events by
analyzing the similarity of bulk statistical measures
representing the distribution of rainfall values across a
region of fixed size, using hierarchical cluster analysis
(Alhamed et al. 2002) as the classification tool.  To
validate this system, results from a small target data set
are compared to a subjective classification of the rainfall
patterns.  If the results from this system agree with a
subjective classification, we can assume that the choices
of attributes and classification schemes are appropriate.
In this case, we find that the system successfully
classifies the cases into convective and non-convective
events with over 90% accuracy.  However, further
refinement of the classification was less successful and
leaves room for future improvement.

An initial target data set has been collected to test
various data mining techniques.  This data set consists
of 1h accumulated rainfall analyses obtained from the
NCEP “Stage IV” analysis system (Baldwin and Mitchell
1998) for the period covering late summer/early fall of
2000.  The domain size was chosen to be fixed at 128 x
128 4km grid boxes, which is approximately 500km by
500km.  A set of 48 separate precipitation events occur-
ing at different times and locations across the United
States was selected for inclusion in the target data set.
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The selection criteria was based upon the occurence of
“typical” rainfall patterns that occur often across the U.S.
during the year.  Each of these 48 events are considered
“objects” for classification.  Each case was subjectively
classified (by a SPC meteorologist) into the following set
of event classes and sub-classes:

CONVECTIVE:
Linear - The precipitation field is more or less
consistent along a line, with a large variation in
the direction normal to the line.
Cellular - The precipitation field consists of
nearly circular-shaped features.

NON-CONVECTIVE:
Stratiform - The precipitation field shows little
variation in any direction over a large area.
Orographic - The precipitation field is strongly
tied to the shape of the terrain field.

The target data set is relatively small and man-
ageable but well-populated with interesting rainfall
events that are desirable for classification.   Table 1
shows the distribution of the subjectively classified
events across the four sub-classes, the events are not
uniformly distributed since the majority of the events are
linear or cellular.

There is a large number of possible choices for
attributes that could describe the rainfall pattern over a
region.  An obvious choice is the amount of rainfall at
every point in space obtained from a gridded analysis.
With this choice, one would expect the clustering
algorithm to produce groups of objects that are similar in
a “point-to-point” sense, which is exactly what we want to
avoid in this new paradigm of “events-oriented”
verification.  Therefore, a logical choice for the attributes
might be some sort of bulk statistical description of the
overall distribution of rainfall across a region.  To being
this work, parameters of a theoretical statistical
distribution fitted to the histogram representing the
observed distribution of rainfall amounts across the
region are selected as attributes.  For the theoretical
distribution, the gamma distribution was selected since it
is well suited for rainfall data and has been widely used
for rainfall histogram analysis (e.g., Wilks 1990). Due to
the spatially correlated nature of rainfall, a robust method

of parameter estimation of the gamma distribution is
required, therefore we selected the generalized method
of moments (GMM) estimation technique (Hamilton
1994). 

GMM can be considered an extension to the more
familiar method of moments technique for parameter
estimation.  In the method of moments technique, a set
of equations are developed to cover the number of
unknown parameters found in the model.  In the case of
the gamma distribution, there are two unknown parame-

ters, α and β, therefore two equations relating these to
known quantities are needed.  Here, the two equations
are found by equating the first two computed sample
moments to the population moments.  For example, the

population mean of the gamma distribution is  αβ and the
sample mean is x (which is known, computed from the
observed data).  The population variance (related to the

second moment) is αβ2 and the sample variance is σ2.
Equating these sample and population values provides a
set of two equations and two unknowns.  This system

can easily be solved to find that α=x2/σ2 and β=σ2/x.
These parameters fit the observed mean and variance
exactly, but higher-order moments are not taken into
account.  In some cases, it may be desirable for the
parameters to provide a better fit to the observed skew-
ness (related to the 3rd moment) or kurtosis (related to
the 4th moment).  The GMM technique allows for this by
adding higher-order moments to the equation set, result-
ing in an non-linear system of equations which can then
be solved by least-squares methods.  The spatial corre-
lation in the observed data can affect the parameter esti-
mation by modifying the weighting matrix used to
determine the weighted sum of squared errors that are
minimized by the least-squares optimization (see Bald-
win and Lakshmivarahan 2002 for more details).  In this
work, we tried several different combinations of moments
and values of the lag-correlation in the data in estimating

the gamma parameters. These estimates of α and β are
then used in a classification algorithm in order to find
clusters of similar rainfall events.

Since classification is the desired data mining
task in this work, hierarchical cluster analysis has been
selected as the primary classification tool for this work.
Here, objects will be clustered where objects are defined
as rainfall events over regions of fixed size, and
attributes are the parameters of the gamma distribution
fitted to the observed rainfall distribution.  The goal of
this heirarchical classification scheme is to first group the
cases into convective/non-convective classes, then fur-
ther refine these classes into linear/cellular for the con-
vective class and stratiform/orographic for the non-
convective class.  The hierarchical cluster analysis
method that is chosen for this work is Ward’s method

Table 1: Subjective event classification for the target data set.

Event type (# of cases) Case numbers

Convective: Linear (16) 1-16

Convective: Cellular (18) 17-34

Non-convective: Orographic (6) 35-40

Non-convective: Stratiform (8) 41-48



(Alhamed et al. 2002), which is based upon the fact that
the total variance of all of the objects is constant and can
be partitioned into the sum of between-cluster and
within-cluster components.  The criteria for adding an
object to a cluster is minimizing the squared error, which
is the same as minimizing the within-cluster variance,
and therefore maximizing the between-cluster variance.
This forces the objects found within a cluster to be simi-
lar while keeping the clusters as separate as possible.
Ward’s method has been found to produce good results
for meteorological data in previous research (Alhamed et
al. 2002).

The results show that this system produces four

main clusters (Table 2).  This shows that the cluster

analysis successfully classified the cases into the
subjectively determined convective/non-convective
classes.  For example, clusters 1 and 2 are unanimously
populated by convective-type events (both linear and
cellular).  Cluster 3 is dominated by convective events,
with 3 (out of 18) exceptions.  Cluster 4 is dominated by
non-convective events, with 1 (of 12) exception.  Overall,
there are only 4 out of 48 “mis-classified” events,
resulting in a 92% classification accuracy.   In addition,

for this example there is a threshold value of β (=1.5) that
cleanly separates the three convective clusters from the
non-convective cluster.  These results were similar to
those found with three and four moments, and by
increasing the lag-correlation (see Baldwin and
Lakshmivarahan 2002 for more details).

Now we examine how well the cluster analysis
classifies the cases into the four sub-classes (linear, cel-
lular, stratiform, orographic).  Returning to the 2-moment,
uncorrelated experiment (Table 2), cluster 1 contains
four cases that were subjectively classified as linear and
four that were subjectively classified as cellular precipita-
tion events.  Cluster 2 is also evenly split among the lin-
ear and cellular precipitation events with five cases from
each.  Cluster 3 contains six linear events, nine cellular
events, one orographic, and two stratiform events. Clus-
ter 4 contains mainly stratiform (6) and orographic (5)
events, with one linear event included.  These results
show that the CA did not produce clusters with a clear

preference for a particular sub-class in this experiment.
These results were similar to those found with three and
four moments, and by increasing the lag-correlation
value, with some variation.

These results should not come as a surprise,

since two parameters (α,β) should be able to discrimi-
nate between two classes (convective,  non-convective)
quite well, but have some difficulty in further refining the
classification.  It is reasonable to expect that additional
discriminants will be needed in order to increase the
degrees of freedom and allow the classification system
to identify finer and more specific classes of events.  This
sets the stage for future work where we will use; cluster
analysis to classify events based upon similarity of the
raw values at each point in space, principal component
analysis to transform the data, image processing tech-
niques to refine the selection of attributes, etc.  The
choice of attributes is obviously critical, attributes based
upon some measure of the spatial variability and inter-
mittence (e.g., Harris et al. 2001) of the fields could help
in refining the classification.    
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