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1. INTRODUCTION

U.S. Navy weather observing and forecasting
operations would be greatly assisted with the
immediate assessment of remote meteorological
parameters when ground observations are not
available. To this end, numerical weather
prediction data and satellite data from various
sensors and platforms are being used to develop
automated algorithms to assist in operational
weather assessment and forecasting. Supervised
machine learning techniques are used to discover
patterns in the data and to develop associated
classification and parameter estimation
algorithms. These data mining methods, used in
a Knowledge Discovery from Databases (KDD)
procedure, are applied to cloud ceiling height, rain
rate, and rain accumulation estimation at remote
locations using appropriate geostationary and
polar orbiting satellite data in conjunction with
Coupled Ocean/Atmosphere Mesoscale
Prediction System (COAMPS) data. Data mining
methods have determined an algorithm to
diagnose these sensible weather elements more
accurately than numerical weather prediction or
satellite methods alone. Further detail about the
initial design of the study, data, methods, and
comparisons to other methods can be found in
Hadjimichael el al (1998). Methodology overview
and results from the data mining work are
presented here.

1.1 Knowledge Discovery from Databases

Data mining is a general term referring to a set
of methods for extracting patterns from data. In
general, it may apply to both traditional statistical
methods, and artificial intelligence machine
learning algorithms. Knowledge Discovery from
Databases refers to a procedure to using data
mining algorithms in a process of studying data to
discover useful information (Fayyad et al, 1996a;
Weiss and Indurkhya, 1998).

KDD has been successfully applied to many
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scientific problem, including astronomy,
geophysics, and meteorology. Some of the
commonly used data mining methods include
inductive machine learning, regression, clustering,
summarization, generalization, and dependency
modeling.

2. DATA SOURCES

In order to discover the relationships between a
variety of physical variables, both calculated and
measured, a database must be created from a
“fusion” of data from various sources.

A unique meteorological research tool
consisting of a database of COAMPS output,
satellite data, climatology, and ground truth
observations (METAR) has being created for use
in data mining. COAMPS output parameters,
coincident satellite parameters (including both
geostationary and polar-orbiting data) and
climatological information are extracted/computed
at 45 METAR observation sites. Automated data
collection routines have been written and data has
been collected hourly since July, 2000. Data
mining techniques have been applied to study
cloud ceiling height and rain accumulation
diagnosis.

Figure 1. Focus area over U.Swest coast. All
locations are within the inner grid.
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Figure3. Focusarea over Adriatic Sea.

2.1 Numerical Model Data

COAMPS is the numerical weather prediction
model used to generate output values of selected
relevant parameters. The model is run in three
geographic regions, U.S. west coast, Adriatic Sea,
and Korean peninsula, and configured with three
nested grids (Figure 1). There are 33 grid levels
in the vertical. COAMPS is run for a 12-hour
forecast cycle for each of these domain
configurations at 00 GMT and 12 GMT each day.
Interested readers can find additional COAMPS
details in Hodur (1997).

The closest land grid point (within each of the 9
km domains) to the 45 (18 West Coast, 14
Adriatic, 13 Korea) METAR stations is determined
and COAMPS output values at those grid points
for each hour are extracted and written to the
database. Table 1 is a list of those COAMPS

Total rain z/L

u* Max vert. velocity in PBL
t* Max TKE in PBL

q* 10m, 1500m temp diff

Surface roughness

Precipitable water

10m, sfc temperature diff

Cloud coverage

10m, sfc mixing ratio diff

Max mixing ratio in PBL

Cloud base height (qc)

1000mb, 850mb thickness

Cloud top height (qc) Cloud/No Cloud

Table 1. COAMPS parameters extracted for each
of the 45 locations (over 3 focus areas).

In addition to extracting values for the database,
COAMPS output can be viewed in static or
animated 2D form over the appropriate domains
for further interpretation and analysis.

2.2 Satellite Data

Data from three geostationary satellites, GOES-
10, European Meteosat-7, and the Japanese
GMS-5 are extracted and added to the database.
This data will consist of all channel data at a given
pixel whose center is closest to the
latitude/longitude of each of the METAR stations.
All visible channel data is corrected for the solar
zenith angle. In addition to the channel data, a
cloud optical depth algorithm (Wetzel et al., 1999)
is applied and a GOES-only low cloud product
(Lee et al., 1997) is derived, with their respective
values extracted and stored.

NOAA polar-orbiting Advanced Very High
Resolution Radiometer (AVHRR - local area
coverage (LAC) and global area coverage (GAC))
data and Defense Meteorological Satellite



Temperature Wind direction
Vapor pressure Wind speed
Dewpoint temperature Wind gust

Altimeter Weather

Visibility Total cloud coverage

Ceiling/No ceiling Lowest cloud coverage

Ceiling height Cloud coverage fraction
and height at all

reported levels

Table 2. METAR parameters.

Program (DMSP) Special Sensor Microwave
Imager (SSM/l) polar-orbiting data are also
extracted and stored in the database. The
AVHRR LAC and GOES data records include a
derived cloud type classification in addition to the
channel data. In addition to the various
microwave channel va;lues, environmental data
records (EDRs) are computed from the SSM/I
channel data These parameters include rain rate,
cloud liquid water, and precipitable water.

Using appropriate COAMPS and satellite data,
a cloud top height value is derived for all sensors
except the SSM/L Using satellite-based

algorithms (Turk et al, 2001) rain rate and
accumulation values are copmuted from the
geostationary satellite data.

Similar to the COAMPS output, satellite imagery
can be viewed in static or animated 2D form. In
addition to this visualization, monitoring tools have
been developed to allow for a quick view of model
and satellite retrieval performance.

2.3 Ground Truth Data

All collected METAR reports for the 45 selected
stations are parsed, with sensible weather
elements stored in the database. These weather
parameters represent the ground truth and are the
dependent variables in the subsequent search for
patterns which relate satellite and model variables
to locally observable parameters. Table 2 is a list
of METAR elements. Of the variables in Table 2,
Ceiling height is the first parameter examined in
the data mining portion of the KDD process. Rain
rate and rain accumulation analysis will follow.

3. DATABASE DEVELOPMENT
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Figure4 Data flow and schema. The three continuous data sources (COAMPS, Satellite, METARS), are stored
for visualization through a web interface as two dimensional images, and are post-processed for storagein the

database management system.




All parameters discussed in the previous
section are computed, processed, collected, and
stored in a single database. The database tables
are updated once a day after all model runs and
post-processing has been completed. Each table
row represents the available information for a
particular location at a specific hour.

The flow of data involves five steps:

1. Data generation/collection.

2. Data cleaning and pre-load processing.

3. Data loading in each individual, source-
specific table.

4. Data post-load processing
(calculate/update various derived fields).

5. Data consolidation: generating an Event
record (see Figure 2) for each date/time
where complete information is available
(i.e., data from all three sources).

The database is organized in a star schema as
shown in Figure 4. The key of each table is the
day-time group and the location ID. The
Climatology and Location tables are constant-
valued reference tables, while the NWP, OBS,
and Satellite tables are updated daily with new
data, consisting of records for each specific
location and day-time group..

Some pre-load steps include:

* Time rounding: adjusting the time stamp of
METAR reports and satellite points to the
closest hour, to correspond with the model
data.

» Satellite filtering: recognizing missing data.

» Satellite derived products: low clouds, cloud
optical depth, cloud classifications,
environmental data records, etc.

e METAR report processing: computation of
vapor pressure, cloud/no cloud, variable wind
directions, etc.

* METAR cleaning: removing duplicate, later
corrected, or mislabeled reports.

« COAMPS/Satellite  combination  products:
using satellite infrared temperatures together
with COAMPS profiles to determine cloud top
height.

Our data mining tools require as input a
denormalized (flat) table. In other words, rows
representing the location of interest will be
selected from all database tables containing the
required information and joined together to form a
single Event record of up to 90 variables. Each
row will represent all available information for one
day/time at one location.

4. METHODOLOGY

The primary tools selected for data mining are
C5.0 and Cubist (Quinlan, 1992). These were
selected for their ease of use and well-recognized
robustness. C5.0 generates decision trees, which
are used for classification into categories. The
Cubist program creates a set of rule-based
predictive models, which are used for regression-
type estimation of continuous values. Data was
extracted from the Oracle database as a flat,
ASCIlI format file, using Oracle Discoverer.
Studies were done on each focus area
independently, but combining each data from all
locations within each focus area. Studies
examining each location independently rarely
showed any improvement. This is mostly likely
because of the much smaller training set available
for an individual location..

The data was randomly evenly divided into
training and testing sets, although 10-fold cross
validation was also used for error estimates. To
achieve the best results, each experiment was
decomposed into three components:

1. Determination of cloud presence. We used
C5.0 to create a decision tree which could
classify each record as “Cloud” or “No
Cloud” to indicate cloud presence.

2. In locations with cloud presence,
determination of low cloud ceiling
(< 1000m) versus high cloud ceiling. Once
again we used C5.0 to create a decision
tree to classify the “Cloud presence”
records.

3. In locations with low cloud, determination
of cloud ceiling height is performed using a
rule set generated by Cubist.

Learning experiments were based on three
different sets of variables:
1. COAMPS variables only.
2. Satellite variables only
satellite for each region).
3. Fused (combined) COAMPS and Satellite
variables.

(geostationary

5. RESULTS

Our initial work has focused on cloud ceiling,
and on the West Coast during daylight hours.
Overall, the data mining method outperformed all
other methods. We compared it to the COAMPS
derived ceiling calculation, as well as the single
source variable sets described above.

Figure 5-Figure 10 show plots of a sample
location, KMRY, in several variations. Figure 5



KMRY low clouds
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Figure5. Plot of data mining-predicted low cloud ceiling heights ("Predicted") vs. ground
truth ("Ceiling_Ht").
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Figure 6. Same as previous figure, but with Bezier smoothing of datapoints.



KMRY low clouds
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Figure 7. Plots of observed ceiling ("Ceiling_Ht"), data mining predicted ceiling
("Predicted"), COAMPS derived ceiling parameter ("Ceiling"), and COAMPS water mixing ratio
derived cloud base height ("corrCBHqc").
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Figure8. Samefigure as previous, but with Bezier smoothing.



KMRY low clouds (0 <= nwp <= 1000)
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Figure9. All plots, with only cases where COAMPS ceiling < 1000m..
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Figure 10. Same as previous plot, with Bezier smoothing..



shows a comparison of our predicted ceiling
height for low clouds (“Predicted”), versus the true
observed ceiling height (“Ceiling_Ht"). Figure 6
reflects the same data, but smoothed using a
Bezier technique. The smoothed plots show a
clear relationship between the cloud ceiling we
have calculated, and the ground truth values. The
next two figures show the same plot, but with
COAMPS ceiling estimates included, both the
COAMPS derived ceiling, and a cloud base
derived using the water mixing ratio. Note that,
because COAMPS has difficulty determining low
cloud ceiling cases, there are a great many cases
plotted which are actually high cloud ceiling, or no
ceiling captured in that data set. The smoothed
plot shows this bias clearly. The final pair of
figures plot only that data where both COAMPS
and our method indicate low ceiling. Once
again, the smoothed plot shows a close
correspondence between our method and ground
truth, and indicates a bias in the COAMPS
estimates. Note that all the data was randomly
shuffled and replotted, resulting in a similar
correspondence in  Bezier-smoothed plots,
suggesting that the degree of correspondence is
independent of any temporal information in the
data.

Table 3 Shows error comparisons for the entire
west coast. The COAMPS ceiling method is the
derived calculation produced by COAMPS. The
remaining three methods are all created using
C5.0/Cubist, on different sets of variables:
COAMPS variables only (except the ceiling
product), satellite variables only, and the fused set

of variables. It is clear from the results, the data
West Coast Error (%) Avg. error
Locations A
correlation
Method Cloud |Low cloud |Cloud base
presence | detection height
COAMPS 213.0
ceilin 25.5 50.2
g 0.5
COAMPS 128
variables 21.0 21.9
.73
Satellite 170
variables 12.2 22.2
.52
Fused 126
variable set| 11.1 19.9 -

Table 3 Classification and regression error
comparisons

mining method outperforms COAMPS in average
error, and the benefit of using fused COAMPS
and satellite variables is demonstrated.

6. CONCLUSION AND FUTURE WORK

Our initial results demonstrate the viability of
using KDD to discover algorithms which can
locate cloud presence, and calculate cloud ceiling
more successfully than numerical weather
prediction models. Furthermore, results indicate
that both COAMPS and satellite variables make
contributions to the final results - - indicating the
value of a “fused data” approach. Still remaining
is a study of night-time hours, and the other focus
areas. Also, we are still in the process of applying
these methods to rain rate and rain accumulation.
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