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Abstract

SeaWinds on QuikSCAT, launched in June 1999,
provides a new source of surface wind information
over the world’s oceans. This new window on global
surface vector winds has been a great aid to real-
time operational users, especially in remote areas
of the world. As with in situ observations, the qual-
ity of remotely-sensed geophysical data is closely
tied to the characteristics of the instrument. But
remotely-sensed scatterometer winds also have a
whole range of additional quality control concerns
different from those of in situ observation systems.
The retrieval of geophysical information from the raw
satellite measurements introduces uncertainties but
also produces diagnostics about the reliability of the
retrieved quantities. A working knowledge of the lim-
itations of the instrument and its wind retrieval al-
gorithms will improve the use of the near real-time
QuikSCAT winds.

A characteristic swath of QuikSCAT data in the
Western Atlantic illustrates typical benefits and defi-
ciencies of these valuable data. The effects of the in-
strument’s design and wind retrieval algorithm on the
quality of the data under normal and extraordinary
circumstances are presented. The effects of high
and low winds, heavy rain, and aspects of the in-
strument’s measurement geometry will be illustrated
by selected cases from the swath.

1. Introduction

The primary mission of the SeaWinds instrument on
the QuikSCAT satellite is to retrieve the surface vec-
tor wind over the global ocean (Shirtliffe 1999). Sea-
Winds wind vectors are generally of high quality, but
error characteristics are complex. The two goals of
this paper are to show how well the high quality, high
resolution SeaWinds data depict the ocean surface
wind field, and to provide some insight into the data
�
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errors. We will illustrate the types of errors that occur
due to rain contamination and ambiguity removal.
We will also give examples of how the quality of the
retrieved winds varies across the satellite track, and
varies with wind speed.

SeaWinds is an active, Ku-band microwave radar
operating near

�������
	
and is sensitive to centimeter-

scale or capillary waves on the ocean surface.
These waves are usually in equilibrium with the wind.
Each radar backscatter observation samples a patch
of ocean about ������������ . The vector wind is re-
trieved by combining several backscatter observa-
tions made from multiple viewing geometries as the
scatterometer passes overhead. The resolution of
the retrieved winds is ��������� .

Backscatter from capillary waves on the ocean
surface, therefore, is the desired signal, since therein
lies information about the vector wind. However,
many other factors can influence backscatter obser-
vations and thereby effect the retrieved winds. Rain,
for example, changes the ocean surface roughness,
as well as attenuating and scattering the radar en-
ergy (Jones et al. 2000b; Mears et al. 2000). Light
winds are also troublesome, since the ocean surface
acts more like a reflecting mirror than a scatterer.
Also, the measurement geometry of SeaWinds re-
sults in error characteristics which vary across the
satellite swath.

Given these and other caveats about the data, we
use a single swath of data over the North Atlantic
to illustrate the benefits and potential pitfalls of vec-
tor winds from SeaWinds ( � 3, � 4 and � 5). The illus-
trations presented should improve everyday use of
the data, both qualitative and quantitative, through a
deepened understanding of the instrument, its prin-
ciples of operation and retrieval of vector winds. In
this paper, we use only the near real-time (NRT)
SeaWinds data produced by NOAA/NESDIS and
distributed to operational users in BUFR format,
since this is the data used at operational centers. A
different science data product (SDP) is created by
JPL and distributed by PO.DAAC in delayed mode
in HDF format. Most published work makes use of
the SDP. The important differences between the two



data sets are listed in � 2. We conclude with a short
review of the current and potential uses of SeaWinds
data ( � 6).

2. The SeaWinds instrument

a. Timeline

The NASA SeaWinds space-borne microwave radar
on QuikSCAT was launched 7:15 p.m. Pacific Day-
light Time 19 June 1999 by a U.S. Air Force Titan
II launch vehicle from Vandenburg AFB. SeaWinds
was turned on 7 July and QuikSCAT achieved its
operational inclined polar orbit, ��������� above the
earth 10 July. Each orbit is � � ��� minutes long
and the spacecraft travels at ����������� . There are
about 15 orbits or “revs” (short for revolutions) per
day or about 100 per week, and equatorial crossing
points are separated by ����������� . Every 57 orbits is
a repeat. The orbital plane is perpendicular to the
sunlight—local time at the ascending node is within
30 minutes of 600 am. The spacecraft is rarely in the
earth’s shadow. (Note that QuikSCAT orbits start at
the ascending equator crossing and QuikSCAT revs
start closest to the South Pole.) The first scientifi-
cally valid QSCAT winds were acquired from rev 430
at 1839 UTC on 19 July 1999.

Since its launch, the SeaWinds instrument has
produced ocean surface wind vectors reliably. The
SeaWinds swaths cover over 90% of the earth’s sur-
face in 24 hours. Anomalies tend to occur on holi-
days and weekends. There was a gyroscope failure
on 1 January 2000. The instrument has gone into
safe mode close to 4 July 2001 and 2002 probably
due to cosmic rays over the South Atlantic Anomaly.
On 11 May 2001 there was a GPS failure. In all
cases the QuikSCAT team responded rapidly and ef-
fectively to restart the science data stream.

b. Principles of operation

SeaWinds is the first scatterometer using a rotat-
ing antenna to be flown in space. Microwaves
are transmitted to the surface in two pencil beams.
Then, SeaWinds measures the backscatter from
the earth’s surface at the satellite (Spencer et al.
2000). The fundamental measured quantity is, �
	 ,
or normalized radar cross-section. As the instru-
ment’s 1-meter dish rotates at 18 rpm, two pencil
beams oversample an

� ��������� wide swath on the
earth’s surface with both forward- and aft-looking

measurements. Foreward and aft refer to beam foot-
prints foreward and aft of the spacecraft. Thus the
backscatter values at a single location are observed
within a time span of up to 290 seconds, increas-
ing as the location approaches nadir. There are four
types of measurements or “flavors”—inner-foreward,
outer-foreward, inner-aft, and outer-aft. The Sea-
Winds NRT data contain one composite value for
each flavor for each WVC. Here inner and outer
refer to the inner and outer scan beams with look
angles of ���� ������� and

� �� ������� resulting in approxi-
mately constant incidence angles at the earth’s sur-
face of

� ��� and � �� ��� , respectively. Inner and outer
are horizontally and vertically polarized, respectively.
This diversity of measurements improves the ability
of SeaWinds to determine wind direction. Note that
in the far-swath there are only outer beam footprints,
and thus only two flavors of �
	 . SeaWinds NRT pro-
cessing requires at least one foreward beam mea-
surement and at least one aft beam measurement.

Since there are nominally four flavors of �
	 values
in the center of the swath, but only two in the far-
swath, wind retrievals in the far-swath are expected
to be of lower quality. Further, we may identify two
zones within the inner-swath, which we call the mid-
swath and nadir-swath, of greater and lesser quality,
respectively. The mid-swath ( ��������� ��������� on ei-
ther side of the satellite track) has the greatest diver-
sity of azimuth and incidence angles, and hence the
best quality data. The mid-swath is aka the “sweet
spot”.

c. Retrieval of geophysical quantities

The SeaWinds data are organized in a swath-based
format, with 76 cross track cells. Since the cells are
used to group ��	 data for wind vector retrieval they
are called wind vector cells or WVCs. Unlike NSCAT,
there is no “nadir” gap for SeaWinds. The nominal in-
strument measurement swath extends ��������� to ei-
ther side of the nadir track. Thus, 72 WVCs, with 36
on either side of nadir, should accommodate nearly
every ��	 measurement. Variations in spacecraft at-
titude and the local curvature of the earth will cause
very few �
	 measurements to fall outside of the nom-
inal measurement swath. To accommodate these
measurements, the SeaWinds data products include
4 additional WVCs per row, two on either side of the
measurement swath, for a total of 76 WVCs. For
each across swath position or cell, there are 1624
rows of WVCs, from the beginning to the end of each



rev. Thus each WVC in the entire QuikSCAT mission
may be uniquely identified by rev, row, and cell num-
ber.

The term “wind retrieval” encompasses the pro-
cess of inverting the geophysical model function
(e.g., Freilich and Dunbar 1993; Wentz and Smith
1999) for a given set of ��	 values to obtain (multi-
ple) maximum likelihood estimates of the wind speed
and direction. The inversion process is performed
in a point-wise fashion (assuming each wind vector
cell to be independent of its neighbors), and yields
multiple solutions (ambiguities) due to the azimuthal
variation of the model function. The process of am-
biguity removal is performed in a field-wise fashion;
the baseline algorithm used by SeaWinds is a vector
median filter (Shaffer et al. 1991).

In scatterometry, the wind vector � and backscat-
ter coefficient or ��	 are related the geophysical
model function, � .

� 	�� �������
	�������������  (1)

Here 	 is the azimuth angle and  is the inci-
dence angle of the observation, � is the frequency
(
� �  ����� 	 for SeaWinds), and � is the polariza-

tion. The geophysical model function developed for
NSCAT (Wentz and Smith 1999) has been adjusted
for SeaWinds (Perry 2001). This relationship ne-
glects the effects of other surface parameters includ-
ing sea surface temperature, surface salinity, surface
contaminates, and swell (Brown 1983; Quilfen et al.
2001). Note that � in (1) is the neutral stability wind
at
� ��� , and winds retrieved using this relationship

will differ from the actual winds due to stability ef-
fects (Hoffman and Louis 1990). Also � is relative to
any ocean currents (Cornillon and Park 2001; Quil-
fen et al. 2001; Kelly et al. 2001).

Colocation studies show that if the ambiguity is
properly resolved, scatterometer data are very ac-
curate (Bourassa et al. 1997; Stoffelen 1998; At-
las et al. 1999; Freilich and Dunbar 1999; Wentz
and Smith 1999). Colocation studies for QuikSCAT
suggest comparable accuracy to NSCAT (Biber and
Emery 2000; Bourassa et al. 2002).

This paper describes the attributes of the NRT
SeaWinds data. These data are produced at
NOAA/NESDIS with a 3 hours latency goal. This
is a very stringent goal and almost all data are
available within 3.5 hours. A NOAA/NESDIS web
site (http://manati.wwb.noaa.gov/quikscat/) has dis-
played the QuikSCAT NRT winds since the general
release of QuikSCAT data on 31 January 2000 by

JPL. The NRT SeaWinds BUFR data (Leidner et al.
1999) were first distributed to the operational com-
mmunity 23 February 2000. Rainflags were added
to the BUFR data in mid-June 2000. Hurricane fore-
casters began using QuikSCAT data for the 2000-
2001 hurricane season to aid detection of new trop-
ical cyclones (Sharp et al. 2002). NRT SeaWinds
data have been assimilated by the global analyses
at NCEP since 1200 UTC 15 January 2002, and at
ECMWF since 1800 UTC 21 January 2002.

The SeaWinds NRT processing algorithms are
identical to the science data algorithms (Dunbar
et al. 1995) except that the SeaWinds NRT data
processing algorithms combine the finest grained �
	
measurements into fewer composites than the sci-
ence data algorithms. This is necessary for the wind
vector retrieval to meet operational latency require-
ments. In addition the NRT SeaWinds use NCEP
forecasts to initialize the ambiguity removal, while
the SDP processing uses NCEP analyses. The fore-
casts used are the so-called “aviation” forecasts and
are generally no more than 12 hours old.

3. A representative swath of
SeaWinds data

To illustrate features and uses of the data, we chose
an interesting swath of data over the North Atlantic.
All of our examples are taken from this single swath
of data collected from 2200 through 2215 UTC 28
September 2000, during the descending pass of
QuikSCAT rev 6659. Fig. 1 shows the selected wind
vectors (thinned, for clarity, to every fourth wind vec-
tor cell along- and across-track) overlaid on a GOES
satellite infrared image valid 2215 UTC 28 Septem-
ber 2000. Winds suspected of contamination by rain
are hightlighted in blue. NCEP mean sea-level pres-
sure analysis valid at 0000 UTC 29 September is
also plotted to corroborate features in the satellite
data. This swath includes Hurricane Isaac near its
peak intensity. The swath also includes large-scale
trough north of Isaac between two synoptic centers
of high pressure. As described in � 2, SeaWinds has
no missing data near nadir and synoptic-scale fea-
tures may be observed in the surface wind fields.
Easterly winds are evident in the tropics in the scat-
terometer winds. Further to the north, scatterome-
ter winds show anticyclonic flow around the two high
pressure systems west and east of the low pres-



sure trough. Surface winds in the cloudy trough of
low pressure are somewhat chaotic between the two
centers of high pressure (to the northwest and south-
east). The GOES satellite image shows embedded
regions of convection in the low pressure trough. As
seen in the NCEP MSLP analysis, there are two
lobes of low pressure within the trough. There is rain
contamination of a number of wind vectors in this re-
gion and their effect on the the use of the data will
be shown in � 4. The evidence of rain contamination
in wind retrievals will be presented in � 5.

4. An analysis impact example
of SeaWinds data

Here we show an example of the impact of Sea-
Winds data on the analysis of ocean surface winds.
We use a variational data assimilation method for
two-dimensional wind fields, 2d-VAR. As in all vari-
ational assimilation schemes, 2d-VAR combines ob-
servations and an a priori or first guess estimate of
the solution. The anlysis is found through a min-
imization procedure which balances the best fit to
observations with meteorological contraints on the
solution. For a full description of the technique and
applications of 2d-VAR see Hoffman et al. (2002) and
Henderson et al. (2002).

The 2d-VAR analysis region is the area depicted
in Fig. 1. The analysis grid is a

� � � � � lati-
tude/longitude grid (i.e., no map projection). A three-
hour forecast from NCEP’s aviation forecast model
provides the background wind field and is valid at
2100 UTC 28 September. We chose a short-term
forecast closest in time to the scatterometer obser-
vations for the background, since this is the practice
at many operational centers. SeaWinds data from
rev 6659 (see Fig. 1) are used in the analysis. The
results of two analyses are presented here: ALLOBS
uses all available observations in the region (12004),
while NORAIN uses only those observations free
from rain contamination (10754). Both experiments
use two winds solutions at each data point, and 2d-
VAR chooses one during the analysis. For more in-
formation on QC methods for pairs of scatterometer
winds see Hoffman et al. (2002).

The overall impact of 2d-VAR may be seen by com-
paring the observations to the background and then
to the analysis. In the mean, the scatterometer winds
are �� �
� ����� � higher than the NCEP background

winds with a standard deviation of
�  ������� � . In the

analysis, the scatterometer winds are only �� � � � ��� �
higher with a standard deviation of

�  ��� ��� � . There-
fore, 2d-VAR has created a surface wind analysis
which fits the scatterometer data better in both mean
and rms wind speed. (It should be noted that scat-
terometer winds are generally higher than winds
from global forecast models because of the differ-
ence in scales represented; scatterometer: ������� ,
global forecast model:

� ��� � ��������� ). A similar re-
sult is found for the ALLOBS analysis, but rain con-
tamination increases both the mean and rms differ-
ences for comparisons with both background and
analysis (see Table 1).

Scatterometers have the ability to detect
mesoscale features which may not be present
in large-scale analyses. Fig. 2 depicts just such
a case. SeaWinds detected a small circulation
embedded in the southern lobe of low pressure in
the synoptic trough. Fig. 2 upper left panel shows
the NCEP background wind field in the vicinity of the
trough. The NCEP 3-hr forecast has simple shearing
flow along the front. Fig. 2 upper right panel shows
the 2d-VAR NORAIN analysis. A closed circulation
is found along the front, which is suggested by
the NCEP MSLP analysis (Fig. 2 lower right) and
supported by a time series of succeeding MSLP
analyses (not shown). The ALLOBS analysis is very
poor since rain-contaminated data are used (Fig. 2
lower left). The speed and direction of the winds in
these areas of heavy rain make them unsuitable for
use in data assimilation.

5. Factors influencing SeaWinds
data quality

Careful quality control is vital to consistently obtain
high quality results. Understanding of the instrument
and algorithm characteristics provides insights into
the factors controlling data quality for SeaWinds. In
� 2 we briefly described the viewing geometry, the
effect of rain, and the accuracy of SeaWinds winds.
In this section we reprise each of these in more de-
tail with regard to potential effects on data quality.
We present typical examples of data and discuss the
associated data quality concerns, for different parts
of the swath, for different wind speeds, and for rain
versus no rain. The loss function for representative
WVCs presented here graphically illustrate the work-



ings of the wind retrieval algorithm.

a. Scatterometer objective functions and wind re-
trieval

Many of the special data characteristics of a scat-
terometer are revealed by examining the likelihood
function which is maximized during the wind re-
trieval. In SeaWinds processing, various approxima-
tions make the process of maximizing the likelihood
equivalent to minimizing an objective function which
is equal to the sum of squared scaled differences
between observed and simulated backscatter. Each
difference is scaled by its expected error. The loss
function is precisely defined in the appendix.

The nature of the ambiguity of scatterometer data
is apparent when the function is plotted with respect
to the retrieved values of the � and � wind compo-
nents. Because the objective function has such a
large range, for plotting purposes we add 4 to the ob-
jective function, set values above 400 equal to 400,
and convert to decibels. In the plots the values run
from � ��� (red) to ��� ��� (blue), and we superimpose
the first five

� ���
contours to the plot (the maximum

value contoured is
� � ��� ).

A typical example for QuikSCAT is shown in the
bottom panel of Fig. 3. But first consider the top
panel showing the result of using just one backscat-
ter measurement, in this case the foreward outer
beam. Every point on the green dotted curve is a
wind which exactly fits the single observation. The
single backscatter observation does not tell us any-
thing about wind direction, but does strongly indicate
a minimum plausible wind speed of � �  � � ��� . In
other words, the backscatter measurement implies a
lower limit of surface roughness. Even if the view-
ing geometry maximizes the apparent roughness,
the wind must be � �  � � ��� . On the other hand
wind speeds � � � ����� are unlikely. The modula-
tion of wind speed with wind direction shown by the
green curve makes it impossible to deduce an accu-
rate wind speed from the single measurement, but it
is this modulation which makes wind vector retrieval
possible from multiple measurements.

This is seen in the middle panel of Fig. 3 which
shows the result of using both foreward and aft outer
beam measurements. This scenario is similar to the
nominal mode for the original Seasat satellite scat-
terometer. The green dotted curve is as before.
Points on the black dotted curve exactly fit the aft
outer beam observation. Now there are four distinct

minima, at the intersections of these two curves, cor-
responding to four wind ambiguities, plotted here as
arrows. In this case, the ambiguities are all per-
fectly consistent with both measurements. There-
fore without additional information, all four are con-
sidered to be equally likely. As the wind, viewing
geometry, and/or observational errors vary, the two
quasi-ellipses may change orientation and aspect ra-
tio leading to zero to four intersections or near inter-
sections, and a corresponding number of retrieved
wind ambiguities.

Finally the bottom panel, adds the inner beam
measurements as well. Wind arrows plotted here
are the operational NESDIS NRT retrievals. With the
addition of the inner beam measurements, there is
less symmetry than in the middle panel, and there
are no intersections of all four quasi-ellipses. In the
absence of errors—instrument noise, model function
error, etc.—there would be one intersection. In the
real data case we must take the minima of the ob-
jective function as “best” estimates of the wind. Note
that it is now possible to rank the ambiguities by like-
lihood. The ambiguity with the greatest eastward
component is most likely. However it is the ambiguity
with the greatest northward component which is cho-
sen by the ambiguity removal algorithm, and which
is consistent with the synoptic situation. This cell is
in a broad region of southerly winds (not shown).

b. Swath-dependent characteristics

The viewing geometry varies across the swath and
with the wind direction, resulting in different ambigu-
ity patterns. Some examples are shown in Fig. 4.
The upper panel shows one complete row of se-
lected wind vectors plotted on top of a GOES satel-
lite image. The wind barbs alternate colors to help
distinguish odd (black) and even (red) numbered
cells. The lower three panels highlight the objective
function at different points across the swath. Cell 38
shows behavior which may be seen close to nadir.
In such cases, although 1, 2, 3 or 4 ambiguities may
be defined, there is in fact little directional informa-
tion and limited speed information. For cell 38, the
wind speed is probably in the range � � �� � � ��� and
the wind direction is unlikely to be from the North, but
one can say little more. The poor definition of wind
direction near nadir is a consequence of having es-
sentially only two azimuth angles. In these cases
the quasi-ellipses are well aligned—if they were per-
fectly aligned, the pattern would reduce to that of a



single observation (top panel of Fig. 3). Cell 18 is a
good example of the objective function in the “sweet
spot” or near-optimal viewing geometry. Four ambi-
guities are found, and the minima are well-defined.
Two minina are dominant and these two are approx-
imately opposed. The direction of the selected am-
biguity is easy to verify since the observation is in
the environment of Isaac. For cell 4, two ambigui-
ties are found and they are approximately opposed.
At this point in the far swath, the minima, though
clear, are more elongated than in the sweet spot
because the diversity of azimuth viewing angles is
quite small. This analysis of the QuikSCAT objective
function suggests, and comparisons with other data
sources show, an increase in the rms speed and di-
rectional error near nadir and at the far swath edges.

c. High and Low winds

Very high and very low winds are also problem-
atic for the scatterometer. Since the GMF is tuned
in part with buoy observations and gridded fields
from weather forecast models, very small-scale, high
winds are not present in these data sets. Con-
sequently, winds above ��� � ��� � are not often re-
trieved, and when they are, the retrieved winds usu-
ally underestimate the true wind speed (e.g., Hurri-
cane Isaac presented in � 3).

Low winds have very poor directional skill. Be-
low a threshold wind speed no small waves are gen-
erated (Carswell et al. 1999), but the scatterom-
eter footprint will usually average over a range of
wind speeds (Plant 2000; Shankaranarayanan and
Donelan 2001). Low directional skill is the conse-
quence of a physical limitation of the instrument’s
measurement principle. With no winds, the sea sur-
face is like a smooth glass reflector, and there is vir-
tually no backscatter.

Negative ��	 observations are indicative of very
light winds. During processing an estimate of the
noise is removed from the measurement. Therefore,
for low wind speeds, when the true reflected power
is very small, the estimated reflected power may be
negative (Pierson 1989).

The ��	 measurements are stored in
���

and can-
not represent negative values. One bit of the �
	 qual-
ity flag, denoted � here, indicates whether the normal
(ratio) space �
	 is negative. Thus

��	�� ratio � � � � � ��� � ��� ��	�� 	�
��� � 	�� 
Fig. 5 shows the objective function for a very low

winds case where two of the four �
	 values are neg-
ative. Notice that virtually no directional information
is present.

d. Rain contamination

Rainflags have been developed for SeaWinds after
the launch of QuikSCAT. Original plans paired Sea-
Winds with a passive microwave sensor that would
have provided a rainflag. Instead a variety of alter-
native rainflags have been proposed, and several of
these have been combined into a multi-dimensional
histogram (MUDH) rain indicator and rainflag (Hud-
dleston and Stiles 2000). The effect of rain on Sea-
Winds wind speed errors varies with the wind mag-
nitude (Weissman et al. 2002). Thus Portabella
and Stoffelen (2001) developed a quality control and
rain detection procedure for SeaWinds that applies
a wind speed dependent threshold to the normal-
ized SeaWinds residual, i.e., the degree of consis-
tency of the observed backscatter and the retrieved
wind. The Normalized Objective Function (NOF) de-
veloped by Mears et al. (2000) is based on a sim-
ilar measure of consistency. Additional rainflags
have been developed (Jones et al. 2000b; Bouk-
abara et al. 2002) making use of brightness tempera-
ture inferred from the SeaWinds noise measurement
(Jones et al. 2000a).

Fig. 6 shows an example of the kind of effect rain
can have on SeaWinds observations. As in Fig. 4,
the upper panel shows a highlighted row of selected
wind vectors while the lower three panels show ob-
jective functions for selected cells. Cells 41 and 36
are rain free according to the MUDH and NOF rain-
flags, but cells 40-37 are affected by the heavy rain
in the front. Notice that the minima in the rain-free
cells are very much lower and better defined than in
cell 39. Rain has equalized backscatter for cell 39
from all view points and virtually no wind direction
signal remains. Also notice rain has nearly doubled
the wind speed compared to neighboring rain-free
cells.

6. Uses of SeaWinds data

SeaWinds and other scatterometer data in general
have many potential uses.

SeaWinds and other scatterometer data help to
detect and precisely locate TCs (Veldon et al. 2002;
Ritchie et al. 2002) and extratropical cyclones. Pat-



terns in scatterometer winds make possible early de-
tection of TCs and tropical depressions (Katsaros
et al. 2001). The method of Sharp et al. (2002)
detects TCs by calculating the vorticity on the Sea-
Winds WVC grid, and applying a threshold. Zier-
den et al. (2000) used NSCAT, the precursor to Sea-
Winds, to study cyclone surface pressure fields and
frontogenesis, and Liu et al. (1997) used NSCAT to
monitor the evolution of TCs. Scatterometer data
can be used to specify the radius of gale force winds
(Edson and Hawkins 2000; Hawkins and Helveston
1998), and in addition can depict the 2-D patterns of
surface wind speed in storms.

SeaWinds and other scatterometer data are use-
ful for weather analysis and forecasting (Atlas et al.
2001). These data have generally been shown to
have a positive impact on Southern Hemisphere ex-
tratropics numerical weather prediction (NWP) and a
neutral impact on Northern Hemisphere extratropics
NWP (e.g., Andrews and Bell 1998), and a positive
impact on NWP of tropical cyclones (e.g., Isaksen
and Stoffelen 2000; Leidner et al. 2002).

SeaWinds and other scatterometer data improve
our understanding of the physics of small scale
ocean-atmosphere and atmosphere-topography in-
teractions. Examples of such interactions include
the South Georgia Island wind shadow (Freilich and
Vanhoff 2003) and the Central American wind jets
(Chelton et al. 2000a,b). Several investigators (Liu
et al. 2000; Chelton et al. 2001; Polito et al. 2001)
combined scatterometer data and satellite based
SST analyses to discover a wave-like disturbance
propagating in the ocean-atmosphere system near
the equator. A similar phenomena was found to oc-
cur along the wake of a tropical cyclone (Lin et al.
2002).

SeaWinds and other scatterometers also provide
fractional coverage of sea ice, monitor large ice
bergs in all weather conditions, map different types
of ice and snow, and detect the freeze/thaw line in
tundra (Gohin et al. 1998; Ezraty and Cavanie 1999;
Remund and Long 1999; Long et al. 2001; Drinkwa-
ter et al. 2002).
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8. Appendix: Scatterometer loss
function

The maximum likelihood estimator is the value of the
objective function which is maximized, divided by the
number of ��	 WVC-composites used. The objective
function is the negative of the sum of squared dif-
ferences between observed and modeled �
	 values,
where each squared difference is normalized by its
expected variance, �

�
. Three coefficients, denoted

here as 	 ,
�

and � , are used to calculate �
�
, accord-

ing to

�
� � � 	 � �����	��
 � � � � � ��	 � � � � ��	 � � 

Together the coefficients 	 ,
�

and � represent the
effect of

�	��
, the communication noise, and

�����
,

the “radar equation” noise due to various geomet-
rical and other instrument uncertainties. Also

����

accounts for errors in the formulation of the model
function. The value of �
	 used here should be the
modeled value. That is, during wind retrieval, it is
the estimate of ��	 based on the current estimate of
the wind.
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Table 1: Mean and standard deviation of differences between the background wind field and observations,

and the analyzed wind field and observations.

Differences � ������� ��� �  � � � 
NCEP background-ALLOBS

� ����� � � �  � � � �  � � �

NCEP background-NORAIN
� � �� � � �  � � � �  ����

ALLOBS analysis-ALLOBS
� ����� � � �  ����� �  ��� �

NORAIN analysis-NORAIN
� � �� � � �  � ��� �  � ���



Fig. 1: GOES satellite infrared image valid 2215 UTC 28 September 2000 over the Western Atlantic with
part of QuikSCAT rev 6659 overlaid. The SeaWinds data swath represents about 12 minutes of
data collection, centered at 2207 UTC. SeaWinds data flagged as rain-contaminated are
highlighted in blue. NCEP mean sea-level pressure analysis is valid 0000 UTC.
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Fig. 2: An example of the impact of SeaWinds data on a variational analysis. Upper left panel shows the
background wind field used in 2d-VAR in the vicinity of a synoptic front. The background field is
3-hour forecast from NCEP’s global model, valid at 2100 UTC 28 September 2002. Streamlines
are overlaid to highlight instantaneous features in the flow. The upper right and lower left panels
show 2d-VAR NORAIN and ALLOBS analyses, respectively. For verification, the lower right panel
shows a GOES IR satellite image, valid 2215 UTC, and a sea-level pressure analysis from NCEP’s
global model, valid 0000 UTC 29 September 2002. Scatterometer winds are included for reference
(winds selected by the median filter are shown), valid at � 2207 UTC 28 September 2002.

First Guess 2d-VAR NORAIN Analysis
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Fig. 3: The QuikSCAT objective function (in dB space) plotted as a function of � and � wind components
(in ����� on the abssicia and ordinate respectively). The retrieved winds are plotted as arrows. The
data used are from the NRT product for rev 6937, row 542, cell 60, observed 0942 UT 18 October
2000. The top panel considers only a single backscatter measurement, the middle panel two, and
the lower panel all four. The locus of � � � � � which exactly fit an individual backscatter measurement
is plotted as a dotted line using the color code indicated at the bottom of panels. For reference, in
the lower panel, the global minimum of the objective function is � �  � . It attains a value of 73,998
at the origin in � � � � � space. For clarity, the objective functions have been shifted, truncated, and
converted to dB space as described in the text.
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Fig. 5: The QuikSCAT objective function for a very low winds case. The example is cell 48 from the wind
vector cell row presented in the previous figure (Fig. 4, upper panel). The four observed � 	 values
(ordered as they were measured by SeaWinds) are: outer-fore 5.61107e-05, inner-fore:
-3.99966e-05, inner-aft: 4.15885e-05 and outer-aft: -1.52102e-05. Notice two of the
measurements are negative, an unphysical value which is an artifact of inverting the radar
equation when the signal-to-noise ratio is high (see text).
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