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1. INTRODUCTION

The measurement of rainfall is an important ap-
plication of weather radar. There are many rain-
fall estimation algorithms using radar measure-
ments; these can be roughly classified into two cate-
gories, physically-based and statistical/engineering-
based (Bringi and Chandrasekar 2001). Physically-
based methods rely fundamentally on the precipita-
tion model, namely models for the drop size distri-
bution (dsd), drop shape and drop orientation (or
canting). Especially, the drop shape and drop orien-
tation can play an important role on the physically-
based methods using linear dual-polarization radar
measurements, such as Zg, and Ky,

Basically, the drop shape is close to oblate
spheroidal. In this case, the falling raindrops with-
out oscillation will have their symmetric axis near
vertical. The drop orientation due to turbulence is
known to be Gaussian with zero mean and standard
deviation less than 5° (Beard and Jameson 1983).
However, falling drops will also exhibit steady os-
cillations. Figure 1 shows two fundamental oscil-
lation modes, axisymmetric oscillation and trans-
verse oscillation, as well as their combination (multi-
mode oscillation). Axisymmetric oscillations affect
the shape of the drop but do not affect the ori-
entation because they oscillate along the symme-
try axis. However, transverse oscillations as well as
multi-mode oscillations will exhibit an orientation
distribution which is different from the traditional
Gaussian assumption of orientation (based on drop
turbulence). Since raindrops will be subject to both
multi-mode oscillations as well as turbulence, a sim-
ple way to account for both effects is via an effective
canting angle distribution which is Gaussian with
mean of 0° and with unknown but larger standard
deviation (ocsy).

*Corresponding author address: V.N. Bringi, Dept. of
Electrical Engr., Colorado State Univ., Fort Collins CO
80523; e-mail: bringi@engr.colostate.edu

In this paper, we propose an algorithm to esti-
mate the effective standard deviation of canting an-
gle (ocss or o) using the covariance matrix. We ap-
ply this algorithm to an intense rain event using data
from the CSU-CHILL radar. Based on simulations,
we also show that the bias in rainfall estimation can
be reduced significantly by using the estimate of og.
This methodology may be considered as an alternate
to the method proposed by Gorgucci et al. (2002)
to account for drop oscillations. The method herein
does not use the Kg4, data, but does use LDR and
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2. Theory

In order to study the impact of canting angle on
radar measurements, Hendry et al. (1987) proposed
a canting parameter, py, which directly related to
canting angle distribution and defined as,
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where 3, is the mean canting angle and p(3) is the
pdf of canting angle which is assumed to be sym-
metric about 3,. The p4 can be computed from the
ratio of maximum and minimum cross-polar power
(Per) as,
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For a Gaussian canting angle distribution, ps is a
function of standard deviation of canting angle (o)
as,

pa = exp (—803) (3)

Hendry et al. (1987) also showed that the relation
between p, and o3 is not sensitive to the precise form
for the pdf of 8 except that the pdf be symmetric.
The CSU-CHILL radar can measure the full (3x3)



covariance matrix. The covariance matrix defined
by Tragl (1990) is,
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where ”*” refer to conjugate and (.) denotes time av-
erage. The unitary polarization transformation ma-
trix is defined as,
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where y is the polarization ratio defined as,
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where 7 is ellipticity angle and 6, is tilt angle. Once
we measure the covariance matrix in one polariza-
tion basis (e.g. H-V basis), we can transfer to any
other polarization basis by applying basis transfor-
mation as,
T =Tk 2 T () (7)
The canting angle (/) is defined as the angle be-
tween local vertical (refer as Z direction) and the
projection of the symmetry axis on the polariza-
tion plane. Since there is no evidence that sym-
metry axis projected on the horizontal X-Y plane
will tend to any special direction, we usually assume
that drop orientation along the azimuthal direction
is uniformly distributed. Therefore, the distribution
of 3 is symmetric along the ¢ direction (it also means
that the mean of f is zero). In this case, the maxi-
mum and minimum cross-polar power should be at
0; = 45° and 6; = 0°. For the covariance measured
at linear basis, the ellipticity angle is 0°. Therefore,
the maximum and minimum cross-power are,
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From (8a,b), we can compute ps as well as 0.

The upper panel of Figure 2 shows the scatter
plot of estimated og versus Zg, in a convective rain
cell on 11 June, 2000 of the STEPS project. In the
lower panel, we divide Zy,. into several equal inter-
vals from 0.5 dB to upper bound of Zg, (each inter-
val is 0.5 dB). The results show that oz decreases as
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Z g4, increases and reflects the fact that larger drops
are more stably oriented as compared to small-sized
drops. Moreover, polarimetric-based rainfall algo-
rithms need to take account of this behavior of og
versus Zg, instead of assuming that og is fixed at
5 — 10°. The rain rate algorithm proposed herein
first estimates o3 using p4, and then estimates the
dsd parameters following Tang (2003).

3. Simulation and Discussion
As discussed above, the shape of rain drops are
usually assumed to be oblate spheroidal. There-
fore, the backscattering matrix elements (assuming
Rayleigh scatter) with canting angle of 8 can be ex-

pressed as,
2
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where k, is the wave number in free space, v is the
angle between the symmetry axis and the direction
of incident wave, and « and «, are the polarizability
elements. For the Gaussian canting angle distribu-
tion with zero mean and og < 10° (¢ = 90°), the
intrinsic Zj, Z, and the real part of R, (copolar co-
variance, Spp Sy, ) can be expressed as (Tang 2003),
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where P is the angle moment operating matrix which
can be expressed as,
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where the superscript "m” refer to ”measured”

value. If the dsd is the gamma distribution suggested
by Testud et al. (2001), the reflectivity-weighted
mean size (D,) is,
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and the relation between D, and differential reflec-

tivity in linear scale (£4,) follows a power law as,
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If the relation between drop terminal velocity and
drop size follows a power law (Atlas and Ulbrich
1977), the rainfall rate is,

R = (0.6 x 10 %7)(3.78) Ny f ()
[(4.67 + u)ﬁ (15)
where f(p) is
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Since the reflectivity factor is the 6th moment of dsd,
Tang (2003) showed that the Z-R relation in terms
of Dy is,
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where F(p) is a known function of p.

In our simulation, we used Joss disdrometer dsd
data from Darwin, Australia and assumed that the
mean axis ratio is that suggested by Andsager et al.
(1999) for 1 < D < 4 mm and by Beard and Chuang
(1987) for D < 1 and D > 4 mm. The canting an-
gle (B) is assumed to be Gaussian distribution with
zero mean and og = 2, 10 and 20°. Using these
conditions, we simulate the radar measurements and
corresponding covariance matrix. The ”true” rain-
fall rate is assumed to be given by (15). Since p is
very difficult to estimate in the real case, we assume
that ¢ = 3. Figure 3 shows the estimated rainfall
rate versus “true” rainfall rate at o3 = 2°. The es-
timated rainfall rate is using (17). The uncorrected
case (circle marks) directly uses "measured” &g, to
computed Dy. For the corrected cases, we use o3
to calculate the angle moment matrix (P), and then
compute the intrinsic Zp, Z, and D,. There are two
versions of corrected rainfall rate. The first one (dot
marks) uses simplified py method (using (8a,b)) to
estimate 0g. The second one (diamond marks) uses
the known og which we use to simulate the radar
measurements (in this case og = 2°). Since og is
very small, the three estimators are almost the same
as expected. Figure 4 shows the estimated rainfall
rate versus ”true” rainfall rate at o3 = 10°. The re-
sults show that o3 correction reduces the normalized
error from 9.19% to 3.90%, and reduces the normal-
ized bias from 9.01% to 0.65%. Figure 5 shows an
extreme case. The bias in the corrected rainfall rate
is due to large og (> 10°, our rainfall algorithm is
only valid for o3 < 10°). However, o correction still
reduces the normalized bias from 51.08% to 9.56%.

Figure 1: A computer-generated oscillation se-
quence. The lower right black panel is the equilib-
rium shape of a 5 mm drop, two other black panels
(the diagonal panels) show the transverse oscillation
mode, two white panels (upper right and lower left)
show the axisymmetric oscillation mode, and the
four grey panels show the mixed oscillation mode.
Courtesy of Prof. Ken Beard, University of Illinois.

Our results indicate the need to take account of
effective drop canting (due to multi-mode oscilla-
tions and/or turbulence) for intense rainfall. The
proposed methodology differs from that in Gorgucci
et al. (2002) where the slope of a linear axis ra-
tio model (r = 1 — D) is estimated based on Zj,
Zqr and Kg, data. Note that drop oscillations as
well as turbulence-induced canting will tend to de-
crease this slope relative to the equilibrium axis ra-
tio model. Our method is an alternate approach
which uses LD R and p., data (as opposed to Kg;) to
achieve the same end goal; however, it requires very
good antenna polarimetric performance to achieve
high quality LD R measurements. From the simula-
tion, we found that even within traditional assump-
tion (og = 10°), the drop canting still can bias the
rainfall upto 10%. Usually, we can tune the coeffi-
cients of our algorithms by simulation or rain gage
data to overcome this impact. However, it is better
to take account the effect of canting angle in the-
oretical models and ”tune” the algorithms. More-
over, the results also show that our two versions of
the ”correction” algorithm are very close. It means
that the simplified p, method can estimate og ac-
curately,and therefore, account for multi-mode drop
oscillations and/or canting due to turbulence.

References
e Andsager, E., K.V. Beard and N.F. Laird,
1999: Laboratory measurements of axis ratios
for large raindrops, J. Atmos. Sci., 56, 2673-
2683.
e Atlas, D. and C.W. Ulbrich, 1977: Path- and
area-integrated rainfall measurement by mi-



40

June 11, 2000
30 : 1

201

oI3 ; degree

10r

UB ; degree

Figure 2: Estimated o3 versus Zg,. The upper panel
is a scatter plot. In the second panel, we divide Zy,
into 8 equal intervals, each interval being 0.5 dB.
We calculate the mean and standard deviation of
corresponding o in each interval. The error bar is
one standard deviation.
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Figure 3: The estimated rainfall versus ”true” rain-
fall at og = 2°. The circle-marks are the uncor-
rected rainfall estimations, the dot-marks are the
rainfall estimations corrected by estimated oz, and
the diamond-marks are the rainfall estimation cor-
rected by the known oyeta.
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Figure 4: As in Figure 3 except og = 10°.
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Figure 5: As in Figure 3 except og = 20°.
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