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Abstract. Mozer and Briggs (2003) and Briggs and Ruppert (2003) recently
introduced a new, easy-to-calculate economic skill score for use in yes/no fore-
cast decisions, of which precipitation forecast decisions are an example. The
advantage of this new climate skill score is that the sampling distribution is
known, which allows one to perform hypothesis tests on collections of forecasts
and to say whether a given skill score is significant or not.

Skill, as ever, is defined as improvement over an optimal naive prediction.
We show that the optimal naive prediction depends on both the base rate (the
climatology) of the event being forecasted, and the loss one would incur if one
were to make an incorrect decision based on the forecast.

Here, we take the climate skill score and extend it to the case where the
predicted series is first-order Markov in nature, of which, again, precipitation
occurrence series are an example. We show that Markov skill is different
and more demanding than is persistence skill. Persistence skill is defined as
improvement over forecasts which state that the next value in a series will
equal the present value. We also define the optimal naive prediction in the
Markov case.

Surprisingly, it turns out that the form of the Markov skill score is identical
to the climate skill score, making calculations simple. The distribution of the
Markov skill is more complex than is the distribution of the climate skill score,
however. The distribution for the Markov skill score is presented, and examples
of hypothesis testing for precipitation forecasts are given. We graph these skill
scores for a wide range of forecast-user loss functions, a process which makes
their interpretation simple.

1. Introduction

In a previous paper, Briggs and Ruppert (2003; from here, BR), developed a
test for skill for forecasts of dichotomous events Y . The events Yi in this test were
assumed to be independent of each Yj for all i 6= j. In this paper, we extend the
original skill score test to situations where the event is a two-state Markov chain.
Precipitation occurrence at a point is often a good example of such series.

Much work has been done in the area of investigating forecast value and forecast
verification, most notably in the works of Murphy (Murphy, 1991; Murphy, 1997;
Murphy and Winkler, 1987; Murphy and Ehrendorfer, 1987; to name only a few),
Schervish (1989), Briggs and Leving (1998), Meeden (1979), and Wilks (2001).
Wilks (1995), Mason (2003), and Livezey (2003) provide a detailed list of skill
scores for categorical events, such as we consider here. Wilks (1991) began work in
showing how the dependent nature of observation process interacts with forecast
verification, work which we continue here.
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BR defined forecasts X̃ ∈ [0, 1] made for events Y . Here, we are interested
in the two-decision problem, which is when a decision maker acts on the forecast
X̃ and makes one of two decisions: d1 is he believes Y = 1 will occur, or d0 is
he believes Y = 0 will occur. The decision maker faces a loss k01 is he takes d1

and Y = 0 occurs, and has a loss k10 is he takes d0 and Y = 1 occurs. The loss
can always be parameterized so that θ = k01/(k01 + k01). When θ = 1/2, the
loss is said to be symmetric. BR show that this parameterization allows us to
transform the forecast X̃, for the two-decision problem, as XE = I(X̃ ≥ θ), where
the superscript E designates that XE is an expert forecast, which is any forecast
that is not the optimal naive forecast. The optimal naive forecast XN for Y is the
forecast one would make knowing only p = P (Y = 1). It is easy to show that this
is XN = I(p > θ).

Skill is now defined in two ways. The first is when the expected loss of the
expert forecast is less than the expected loss of the optimal naive forecast. The
second definition of skill is when P (XE = Y ) > P (XN = Y ). BR shows that these
two definitions are identical when θ = 1/2, or when the loss is symmetric. BR
developed a skill score and a test statistic for skill, where the key parameter was
p1|1 = P (Y = 1|X = 1), which was less than or equal to θ under the null hypothesis
of no skill.

This work will extend the same concepts developed in BR to events Yi where {Yi}
is a two-state Markov chain. We first define persistence as the forecast XP = Yi−1

for all i. We show in Section 3 that skill, when Y is Markov, is not the same as skill
of a persistence forecast. In Section 2, we develop a test for comparing any two
forecasts for the same event, which we later apply in Section 4 with a persistence
forecast and the optimal naive forecast. Finally, an Appendix is given that may
help orient the reader, as it highlights the results originally presented in BR.

2. Comparing competing forecasts

In this Section, we develop a simple framework to compare competing forecasts
for the same event. In this framework, there are two forecasts X1 and X2. Define
Z1 = I(Y = X1), which is the indicator that the first forecast is correct, and define
Z2 = I(Y = X2), which is the indicator of the second forecast being correct. We
have that P (Z1 = Z2 = 1) is the probability that both forecasts are correct and
P (Z1 = Z2 = 0) is the probability that they are both wrong. The probabilities
of interest are P (Z1 = 1, Z2 = 0) and P (Z1 = 0, Z2 = 1), that is, the factors
designating those times when one forecast was correct while the other was wrong.
We assume that the loss for one forecast being correct while the other incorrect is
symmetric.

The development in this Section is not entirely new. The tests here are the similar
to McNemar’s test for matched pairs and to its refinement by Mosteller (1952).
Depending on the particual null hypothesis chosen, our statistic is only slightly
different to the classic statistic and, again depending on the null, one could use the
classic statistic in place of this one (this is explained below). The development here
shows how the comparison test operates with respect to the skill test.

We assume that there is an i.i.d. sequence {(X1i, X2i, Yi) : i = 1, . . . , n} and we
define Zji = I(Xji = Yi), j = 1, 2. From these data one obtains a contingency
table of counts, such as illustrated in Table 1. One possible null hypothesis is

(2.1) H0 : P (Z1 = 1, Z2 = 0) = P (Z1 = 0, Z2 = 1)
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Table 1. Forecast comparison contingency table.

Z1 = 1 Z1 = 0
Z2 = 1 m11 m01

Z2 = 0 m10 m00

with the two-sided alternative

(2.2) P (Z1 = 1, Z2 = 0) 6= P (Z1 = 0, Z2 = 1).

This null is similar to the one normally stated for McNemar’s test. Another null is

(2.3) P (Z1 = 1, Z2 = 0) ≤ P (Z1 = 0, Z2 = 1)

with the one-sided alternative

(2.4) P (Z1 = 1, Z2 = 0) > P (Z1 = 0, Z2 = 1).

The likelihood is

L({zi,j}i,j=0,1|Z1, Z2) =
∏

i

∏

j

z
mij

ij ,

where z11 = P (Z1 = 1, Z2 = 1) and so on. Under the null (2.1) the estimates are

P̂ (Z1 = 1, Z2 = 1) =
m11

m++
,

P̂ (Z1 = 1, Z2 = 0) =
m10 + m01

2m++
,

P̂ (Z1 = 0, Z2 = 1) =
m10 + m01

2m++
,

P̂ (Z1 = 0, Z2 = 0) =
m00

m++
.

The likelihood ratio statistic Gc is computed easily; the terms involving z11 and z00

drop out, leaving

(2.5) Gc = 2
{

m10 log
(

2m10

m10 + m01

)
+ m01 log

(
2m01

m10 + m01

)}
.

The distribution of Gc, assuming the two-sided null (2.1), has an asymptotic χ2

distribution with one degree of freedom.
If a one-sided null is chosen the exact form of Gc changes because the MLEs

under the null are different than what are given above. But, if one of the forecasts
is the optimal naive forecast then Gc is the same as BR’s G and has an asymptotic
1/2χ2

0 + 1/2χ2
1 distribution (Self and Liang, 1987; BR, Section 2; see also the

Appendix).
The classic statistic for independence between (null 2.1) Z1 and Z2 is GC =

(|m01 −m10| − 1)2/(m01 + m10) which has a χ2
1 distribution.

This comparison test can be viewed as a test for climate skill in a different guise,
if the first forecast is the expert forecast and the optimal naive forecast is the second
(the null hypothesis is, of course, (2.3)).
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3. Skill tests and Skill Scores

Skill, if it exists when {Yi} is a two-state Markov chain, is known as Markov skill
because the optimal naive forecast of each Yi is based on the previous observation
Yi−1. Markov skill is not identical with persistence skill, in which the naive forecast
for Yi is Yi−1 for all i, as will be shown below. We assume only that {Yi} is Markov,
and not, for example, that {Yi, Xi} is bivariate Markov. No further conditions are
put on {Xi} except that to require P (Xi|Yi−1) be constant for all i.

Daily occurrence of precipitation is a common example of Markov data (Wilks,
1995). We could condition skill scores for forecasts of Markov data on the event
Yi−1 and use the results from BR. That is, individual tests of climate skill can be
carried out for the cases in which Yi−1 = 1 and Yi−1 = 0. This is a useful as a
performance diagnostic to highlight those experts who possibly forecast badly in
one situation but well in the other. This approach in ultimately unsatisfying for
formal testing because it requires two scores, one for Yi−1 = 0 and another for
Yi−1 = 1. It requires two tests for the same reason, where it is desirable to have
only one composite score for the entire set of data.

3.1. Model. Consider the factorization

(3.1) P (Yi, Xi, Yi−1) = P (Yi|Xi, Yi−1)P (Xi|Yi−1)P (Yi−1).

Other factorizations are, of course, possible but it turns out that this form is the
most mathematically convenient to work with. The full model may be expanded to
(with P (Yi−1 = 1) = p) the following set of equations. The methodology is exactly
that used in BR.

P (Yi = 1, Xi = 1, Yi−1 = 1) = p1|11p+1|1p

P (Yi = 1, Xi = 1, Yi−1 = 0) = p1|10p+1|0(1− p)
P (Yi = 1, Xi = 0, Yi−1 = 1) = p1|01(1− p+1|1)p
P (Yi = 1, Xi = 0, Yi−1 = 0) = p1|00(1− p+1|0)(1− p)
P (Yi = 0, Xi = 1, Yi−1 = 1) = (1− p1|11)p+1|1p

P (Yi = 0, Xi = 1, Yi−1 = 0) = (1− p1|10)p+1|0(1− p)
P (Yi = 0, Xi = 0, Yi−1 = 1) = (1− p1|01)(1− p+1|1)p
P (Yi = 0, Xi = 0, Yi−1 = 0) = (1− p1|00)(1− p+1|0)(1− p),

where p1|11 = P (Yi = 1|Xi = 1, Yi−1 = 1), p+1|1 = P (Xi = 1|Yi−1 = 1), p1|10 =
P (Yi = 1|Xi = 1, Yi−1 = 0), p+1|0 = P (Xi = 1|Yi−1 = 0), p1|01 = P (Yi = 1|Xi =
0, Yi−1 = 1), and p1|00 = P (Yi = 1|Xi = 0, Yi−1 = 0).

We shall also need to define the parameters that characterize the Markov nature
of Y . These are

p1+|1 = P (Yi = 1|Yi−1 = 1)
p0+|1 = P (Yi = 0|Yi−1 = 1)
p1+|0 = P (Yi = 1|Yi−1 = 0)
p0+|0 = P (Yi = 0|Yi−1 = 0).

It happens that p0+|1 = 1−p1+|1 and p0+|0 = 1−p1+|0 so that only two parameters
are needed to fully specify the Markov nature of Y .
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It is also helpful to define the following counts. Let nj,k,l, where j, k, l ∈ {0, 1},
be the counts for the cells Yi, Xi, and Yi−1. For example, n111 =

∑n
i=2 YiXiYi−1,

and n000 =
∑n

i=2(1− Yi)(1−Xi)(1− Yi−1).

3.2. Markov skill tests. All of the parameters of this model neatly separate in
the likelihood, making estimation easy. For example, the part of the likelihood
relating to the parameter P (Yi = 1|Xi = 1, Yi−1 = 1) = p1|11 is

∏
p

YiXiYi−1

1|11 (1− p1|11)(1−Yi)XiYi−1 .

It is simple to differentiate and solve for the MLE for all such parameters. It turns
out that the parameters p, p+1|1 and p+1|0 will not play a role in the likelihood ratio
test as their MLEs are the same under both the null and alternative hypotheses for
either pair (2.1) and (2.2) or (2.3) and (2.4). We will use the convention that the
replacement of an index by “+” means summation over that index so, for example,
n++1 =

∑
i

∑
j nij1. The unrestricted MLEs are

p̂ =
n++1

n+++

p̂+1|1 =
n+11

n++1

p̂+1|0 =
n+10

n++0
.

The other parameters do change and the unrestricted MLES are

p̂1|11 =
n111

n+11

p̂1|10 =
n110

n+10

p̂1|01 =
n101

n+01

p̂1|00 =
n100

n+00
.

The optimal naive forecast must now be defined. It turns out that there are four
situations, that is, four circumstances that dictate different optimal naive forecasts.
In BR there were two situations, but we transformed one if necessary to ensure
that P (Y = 1) ≤ 1/2. This shall also be be done here, leaving us to focus on one
situation for the sake of an example. The other three situations will be removed to
the Appendix.

We assume that the events {Yi, Yi−1} are such that p1+|1 < θ and p1+|0 < θ, that
is, the probability that Yi = 1 no matter the value of Yi−1 is always less than θ.
This gives that the optimal naive forecast is always 0. Note that the optimal naive
forecast is different than a true persistence forecast, which would be Xi = Yi−1 for
all i. One solution for deriving persistence skill (but one which ignores the Markov
nature of Y ) is to use the comparative forecast test developed earlier with the first
set of forecasts assigned to the expert, and the second set of forecasts assigned to
persistence. Examples of this will be given later.

It is easier (because of notation) to first define skill in the Markov case in terms
of accuracy, rather than on expected loss (details on how to define skill based on
expected loss are removed to the Appendix). In BR it was shown that the test for
climate skill based on expected loss is equivalent to showing that the probability
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of an expert prediction is correct is larger than the probability of Y = 0 (where
P (Y = 0) > P (Y = 1)). In the Markov case, in order for collection of predictions to
be skillful the probability of a correct forecast must be greater than the maximum
of the probability of Yi = 1 and the probability of Yi = 0 given Yi−1. The null
hypothesis of no skill is

(3.2) H0 : P (Yi = Xi|Yi−1) ≤ max (P (Yi = 1|Yi−1), P (Yi = 0|Yi−1))

for all values of {Yi}. The right hand side of (3.2) is the probability that the optimal
naive forecast is correct. In the case of the optimal naive forecast always equaling
zero, this gives:

H0 : P (Yi = Xi|Yi−1 = 1) ≤ P (Yi = 0|Yi−1 = 1), and
P (Yi = Xi|Yi−1 = 0) ≤ P (Yi = 0|Yi−1 = 0).

The result is analogous to that found in BR. The complete null hypothesis is:

H0 : (p1|11 ≤
1
2
, p1|10 ≤

1
2
).

Asymmetric loss can been introduced in the same manner as in BR with the
changes to the null hypothesis accomplished in the obvious way (details are left to
the Appendix). The final null is then

H0 : (p1|11 ≤ θ, p1|10 ≤ θ).

Once again, all parameters except those indicated in the null hypothesis have the
same MLEs in both the null and alternate hypotheses. The LRS (likelihood ration
statistic) depends on only two parameters, p1|11 and p1|10, which are maximized
under the null with estimates p̃1|11 = min{ n111

n+11
, θ} and p̃1|10 = min{ n110

n+10
, θ}. Sub-

stitution leads to the LRS:

GM = 2n111 log
(

p̂1|11
p̃1|11

)
+ 2n011 log

(
1− p̂1|11
1− p̃1|11

)
+

2n110 log
(

p̂1|10
p̃1|10

)
+ 2n010 log

(
1− p̂1|10
1− p̃1|10

)
.

There are four situations under the null: when both n111
n+11

and n110
n+10

are greater
than θ then p̃1|11 = p̃1|10 = θ and GM > 0; when n111

n+11
≤ θ and n110

n+10
> θ then

p̃1|11 = p̂1|11 and p̃1|10 = θ and GM > 0; when n111
n+11

> θ and n110
n+10

≤ θ then p̃1|11 = θ

and p̃1|10 = p̂1|10 and GM > 0; or when n111
n+11

≤ θ and n110
n+10

≤ θ then p̃1|11 = p̂1|11
and p̃1|10 = p̂1|10 and GM = 0. This allows us to rewrite GM as

GM =
(

2n1|1 log
[

n111

n+11θ

]
+ 2n011 log

[
n011

n+11(1− θ)

])
I

(
n111

n+11
> θ

)
+

(
2n110 log

[
n110

n+10θ

]
+ 2n010 log

[
n010

n+10(1− θ)

])
I

(
n110

n+10
> θ

)
(3.3)

This statistic has an asymptotic mixture distribution under the null of 1/4χ2
0 +

1/2χ2
1 + 1/4χ2

2 where χ2
k is the chi-square distribution with k degrees of freedom

and χ2
0 is point mass at 0 (see Self and Liang, 1987; an extension of their case 5).
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3.3. Markov skill score. A skill score can now be created, as in BR. A common
form for such a score is (see Wilks, 1995 for a more complete discussion of skill
scores):

(3.4) Kθ(y, xE) =
E(kN )− E(kE)

E(kN )
,

where E(kN ) is expected loss for the optimal naive forecast, and E(kE) is the
expected loss for the expert forecast. There are two parts to that equation, E(kN )−
E(kE) and E(kN ). For E(kN )− E(kE), it is easy to show that we have

(p1|11 − θ)p+1|1p + (p1|10 − θ)p+1|0(1− p).

Also, E{k(Y,XN )} is

(1− θ)(p1|11p+1|1p + p1|01(1− p+1|1)p + p1|10p+1|0(1− p) + p1|00(1− p+1|0)(1− p)).

An estimate for Kθ comes from substituting the estimates for p1|11, p1|01 and so on
into these equations. Details will be left to the Appendix. Upon slugging through
the algebra, we find that

(3.5) K̂θ =
(1− θ)n111 − θn011 + (1− θ)n110 − θn010

(n111 + n101)(1− θ) + (n110 + n100)(1− θ)
.

However, it is the case that n111 + n110 = n11+, where n11+ is the number of days
when Yi−1 = 1 and Yi−1 = 0. Similar facts hold for n110 and n010 and so on. What
this means is that (3.5) ultimately collapses to

(3.6) K̂θ =
(1− θ)n11+ − θn01+

(n11+ + n10+)(1− θ)
.

which is identical to the original climate skill score developed in BR, which is not
surprising since the optimal naive forecast is always 0 (as it was in the climate skill
score). This makes computation simple, but more can be done because (3.5) can be
written in a more insightful manner and decomposed into parts for when Yi−1 = 1
and when Yi−1 = 0.

Let D = (n111 + n101)(1− θ) + (n110 + n100)(1− θ), which is the denominator of
equation (3.5). We can now rewrite that equation:

K̂θ =
(n111 + n011)(1− θ)
(n111 + n011)(1− θ)

(1− θ)n111 − θn011

D

+
(n110 + n010)(1− θ)
(n110 + n010)(1− θ)

(1− θ)n110 − θn010

D

=
(n111 + n011)(1− θ)

D
K̂1,θ +

(n111 + n011)(1− θ)
D

K̂0,θ.

where K̂1,θ is the same as equation (3.6) but only calculated for those days when
Yi−1 = 1. Similarly, K̂0,θ is only calculated for those days when Yi−1 = 0.

We have that
(n111 + n011)(1− θ)

D
=

(n111 + n011)(1− θ)
D

n(n111 + n011 + n101 + n001)
n(n111 + n011 + n101 + n001)

=
p̂1+|1p̂

p̂y
,
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where p̂y = P̂ (Yi = 1) (note that p̂ = P̂ (Yi−1 = 1) does not necessarily equal
p̂y = P̂ (Y1 = 1) for any given sample) Similarly,

(n110 + n010)(1− θ)
D

=
p̂1+|0(1− p̂)

p̂y
.

This results in

(3.7) K̂θ =
p̂1+|1p̂

p̂y
K̂1,θ +

p̂1+|0(1− p̂)
p̂y

K̂0,θ.

The contribution of each K̂i,θ is weighted by the proportion of Yi’s=1 on those
days when Yi−1 = 1 and Yi−1 = 0. Because p̂1+|1p̂/p̂y = P̂ (Yi−1 = 1|Yi = 1), and
p̂1+|0(1− p̂)/p̂y = P̂ (Yi−1 = 0|Yi = 1), we can also write (3.7) as

(3.8) K̂θ = P̂ (Yi−1 = 1|Yi = 1)K̂1,θ + (1− P̂ (Yi−1 = 1|Yi = 1))K̂0,θ.

This notation is similar to the idea of sensitivity and specificity.

4. Example

We first start with an example of a simple skill test. We collected probability of
precipitation forecasts made for New York City (Central Park) from 16 November
2000 to 17 January 2001 (63 forecasts) for both Accuweather and the National
Weather Service (NWS). Both Accuweather and the NWS made 1-day ahead fore-
casts, though only Accuweather attempted 14-day ahead forecasts. Accuweather
presented its forecasts in the form of yes/no predictions, while the NWS issued
probability forecasts. Figure 1 shows how the forecasts did.

The NWS did quite well, beating or closely matching Accuweather’s performance
for the 1-day ahead predictions. The figure shows that the NWS forecast would
have value for most users (for many losses). Accuweather performed badly for its
14-day ahead predictions. In fact, any user, regardless of his loss function, would
have done better to use the optimal naive prediction during this time.

We next plot the same data (for the 1-day ahead forecasts) but break it into
days when Yi−1 = 1 and for Yi−1 = 0. The overall probability of precipitation is
p̂y = 0.32. Estimates of the transition parameters are, p̂1+|1 = 0.42 and p̂1+|0 =
0.28 (tests, due to the small sample size, do not show the Markov nature of this
data as “significant”, but it is still useful for illustration).

Both Accuweather and the NWS do better on days where Yi−1 = 1, and do
worse on days when Yi−1 = 0. But graphical analysis is only part of the answer.
We next give a fuller analysis of a larger data set.

Brooks et al. (1997) present two sets of 321 precipitation forecasts for Oklahoma
City. Forecasts were from one-day to seven-days ahead but only the one-day ahead
forecasts are considered here. There are two sources (anonymous forecasts taken
from media outlets) which have produced forecasts for the same event. The forecasts
were given as probability of precipitation.

We now check to see if the precipitation data for which the Brooks et al. forecasts
were produced is Markov. Estimates of the transition parameters are, p̂1+|1 =
0.27 and p̂1+|0 = 0.19 (this also says that p̂0+|1 = 0.73 and p̂0+|0 = 0.81). The
overall probability of precipitation is p̂y = 0.21. This data is actually only weakly
dependent in time (a test for independence between Yi and Yi−1 gives G2 = 1.92,
p-value=0.17), however they will serve as a good illustration. The probability of
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Figure 1. Skill score range plot for Accuweather’s 1- and 14-day
ahead and the NWS’s 1-day forecasts. The dashed horizontal line
shows 0 and predictions below this line have no skill.

Table 2. Skill statistics for Source A (SA) and Source B (SB).
See the text for an explanation of the results.

Statistic SA SB

K̂1/2 0.254 0.209
G (p) 14.1 (0.001) 6.34 (0.006)
K̂1,1/2 0.333 0.111
K̂0,1/2 0.225 0.245
GM (p) 16.04 (0.0002) 8.04 (0.009)
Gc (p) 30.8 (< 0.0001) 27.98 (< 0.0001)

a dry day following either wet or dry is greater than the probability of a wet day.
This is the situation we developed above with the optimal naive forecast always
being 0, regardless of the value of Yi−1. Thus, the optimal naive forecast is not the
same as the persistence forecast.

Table 2 lists the relevant statistics. Shown first are K̂1/2, the climate skill statistic
developed in BR, the climate skill test statistic G and its p-value. Both sources
evidence climate skill, although SA appears somewhat better with a higher skill
score; a K̂1/2 = 0.254 for SA and a K̂1/2 = 0.209 for SB.
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Figure 2. Skill score range plot for Accuweather’s and NWS’s 1-
day ahead forecasts, split into days when Yi−1 = 1 and for Yi−1 =
0. The dashed horizontal line shows 0 and predictions below this
line have no skill.

Table 3. Skill score weightings for the Brooks et al. data.

Yi−1 = 0 Yi−1 = 1
0.73 0.27

Next are the climate skill scores for those days on which Yi−1 = 1 (K̂1) and
for those days in which Yi−1 = 0 (K̂0) (both at θ = 1/2). We can see that SA’s
advantage has come from scoring better on those days which had Yi−1 = 1; a
K̂1,1/2 = 0.333 at SA to a K̂1,1/2 = 0.111 at SB. Both Sources did about the same
on those days which had Yi−1 = 0; a K̂0,1/2 = 0.225 at SA to a K̂0,1/2 = 0.245 at
SB. Both Sources evidenced Markov skill; both sources had large GM s and small
p-values for the test. The weighting (shown in Table 3) for the skill score K̂1,1/2

was 0.27, and for K̂0,1/2 it was 0.73, which shows that the days on which Yi−1 = 0
receive the majority of the weight and explains why SA and SB are still close in
overall performance even though SA scores so well on days when Yi−1 = 1.

A test against a forecast of persistence was examined for both Sources with the
nulls being that the Sources were no more accurate than was persistence. This test
assigns the Source forecast as the first forecast and the Persistence forecast as the
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second forecast. Recall, a persistence forecast is one in which Xi = Yi−1 for all
i. Both Sources had no trouble beating persistence; SA had a Gc = 30.8 and SB
had Gc = 27.98, with p-values< 0.0001. For both Sources, the probability that the
Source forecast and the Persistence forecast being correct was 0.65. SA and the
Persistence forecast were both wrong 11% of the time, while SB and Persistence
were both wrong 12% of the time. SA was correct and Persistence was wrong 19%
of the time, while Persistence was correct and SA was wrong only 5% of the time.
This large discrepancy accounts for why SA evidenced persistence skill. The results
are nearly the same for SB, except that SB was correct and Persistence was wrong
18% of the time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8
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Figure 3. Skill score range plot for Accuweather’s and NWS’s 1-
day ahead forecasts, split into days when Yi−1 = 1 and for Yi−1 =
0. The dashed horizontal line shows 0 and predictions below this
line have no skill.

Finally, we perform an analysis of a persistence forecast. Figure 3 shows the skill
plot for Source A and for a persistence forecast. The 95% point-wise confidence
bound, created by inverting the test statistic G, for Source A’s skill are also shown.
Persistence does have some skill, but for a narrow range of θ; in particular, persis-
tence does badly at θ = 1/2. But this plot does highlight the fact that persistence
forecasts are not the same as optimal naive forecasts (which would have Kθ = 0
everywhere).
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5. Conclusion

We have shown how to extend the basic skill testing framework developed in BR
to events that are Markov. We have also proposed a method, which is an extension
of well-known contingency table tests, to compare competing forecasts for the same
event. We applied this method to test persistence forecasts, which are forecasts,
in meteorological terms, that always say tomorrow will be like today. Skill of a
persistence forecast is when a persistence forecast beats the optimal naive forecast
with respect to the comparison test.

The comparison test, while useful, is not entirely satisfactory because it does not
take into account the dependent nature of the observations. The test developed
above does use the Markov nature of the observations. We also created a skill score
to give a point measure of skill, which we showed reduced to the score given in
BR. So we also showed how the score was a weighted sum of two parts, a skill
score where the previous observation equalled zero, and a skill score where the
previous observation equalled one. The weights were only functions of the observed
observations series (not on the forecasts), that is, they were independent of the
forecast process.

Scores, like those developed above, will be more useful when they can be applied
to field forecasts. An example of such a forecast is a map of PoP forecasts. The
skill score can, of course, be calculated for each point on a field and contours
can be drawn to gauge performance (Drosdowsky and Zhang, 2003). But naively
drawing skill maps won’t take into account the dependent nature of observations
and forecasts across space. New models are needed.

Appendix A. Climate Skill

This appendix contains material originally presented in BR and is given to orient
the reader as all of the above theory takes what is below as given. For a fuller
treatment, please see the original BR.

A.1. Climate Skill Test. BR defined skill, as above, in two ways. The first
says that skill exists when the expected loss of the expert forecast is less than the
expected loss of the optimal naive forecast. The second, related to accuracy, says
that skill exists when the probability that the expert forecast is correct is larger
than the probability that the optimal naive forecast is correct. BR then prove that
these definitions are equivalent when the loss is symmetric.

We are concerned with events Y which are dichotomous. Predictions (which may
be probabilistic) X̃ ∈ [0, 1] are made for Y . Predictions can be either dichotomous
or probabilistic but here we only consider decisions based on forecasts that are
dichotomous. This implies a transformation of a probabilistic prediction into an
eventual dichotomous one, that is, we act is if the event Y = 1 will occur, or we
act as if the event Y = 0 will occur.

We follow the notation developed in Schervish (1989). Let Yi ∈ {0, 1} designate
the ith observation of a dichotomous event, that is, Yi = 1 if the event occurs and
equals zero if it does not. Let the loss kY X (k11 and k00) associated with making
a correct decision equal 0 (this condition is modified later). The finite loss k for
making an error can always be quantified such that the total loss is normalized to
1, so that with Y = 0 and decision d1 the loss can be written as some k01 = θ < 1,
which implies that with Y = 1 and decision d0 the loss is k10 = 1− θ.
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The decision maker minimizes his loss and makes decision d1 whenever (the
possibly probabilistic) expert forecast X̃ ≥ θ or makes decision d0 if X̃ < θ, and
where X̃ indicates a probability forecast. So, X = I(X̃ ≥ θ) reflects the (possible)
probabilistic prediction transformed to a dichotomous one by the decision maker.

Thus, let Xi ∈ {0, 1} designate the ith (possibly transformed) prediction. As-
sume that {(Xi, Yi) : i = 1, . . . , n} is an i.i.d. sequence. Let P (Y = 1|X = 1) = p1|1,
P (Y = 1|X = 0) = p1|0, P (X = 1) = p+1, and P (Y = 1) = p1+ = p. We also as-
sume that each observation Yi is independent of each other Yj for i 6= j and that all
of these probabilities are unvarying for all i. We also assume that cov(Yi, Xj) = 0
for i 6= j, that is, the forecast observation process is not dynamic and that future
observations do not depend on past forecasts. In practice, it could be that this
covariance will be non-zero for Markov Y since Xi may depend (in unknown ways)
on Yi−1. Future work will explore more general models.

The expected loss for the optimal naive forecast depends both on p and on the
value of θ. If p ≤ θ the optimal naive forecast is XN = 0, where the superscript N
denotes the optimal naive forecast. If p > θ the optimal naive forecast is to always
answer XN = 1.

The null hypothesis for the skill test can now be formed. It is

(A.1) H0 : E(kE) ≥ E(kN )

where kE corresponds to the loss of the expert prediction and kN is the loss of
the optimal naive prediction, and expectation is taken over both forecasts and
observations.

Note that p = P (Y = 1, X = 1) + P (Y = 1, X = 0). Substituting for the
expected loss, and noting that XN ≡ 0, (A.1) gives

θP (Y = 0, XE = 1) + (1− θ)P (Y = 1, XE = 0) ≥ p(1− θ)

θP (Y = 0, XE = 1) ≥ P (Y = 1, XE = 1)(1− θ)

θ ≥ P (Y = 1, XE = 1)
p+1

p1|1 ≤ θ(A.2)

The alternative is that p1|1 > θ.
BR prove that H0 : P (Y = XE) ≤ P (Y = XN ) is equivalent to (A.2) when the

loss is symmetric, that is, when θ = 1/2. This neatly ties together the views on
skill defined in terms of loss and accuracy.

Let nY X be the observed count of when Y = y and X = x. The unrestricted
maximum likelihood estimates (MLEs) of the model are easily found as each pa-
rameter separates in the likelihood:

p̂+1 =
n11 + n01

n++

p̂1|1 =
n11

n11 + n01

p̂1|0 =
n10

n10 + n00
,

where n++ = n11 + n10 + n01 + n00. Under the null the MLE for p+1 and the
estimate for p1|0 remain unchanged as might be expected. The null is that p1|1 ≤ θ,
with an estimate maximizing the likelihood of p̃1|1 = min{ n11

n11+n01
, θ}. These facts
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makes calculation of the likelihood ratio statistic (LRS) particularly simple as the
terms involving p+1 and p1|0 drop out, leaving only the terms involving p1|1.

The LRS, G, is

G = 2n11 log
[
p̂1|1
p̃1|1

]
+ 2n01 log

[
1− p̂1|1
1− p̃1|1

]
.

There are two situations under the null: when n11
n+1

> θ then p̃1|1 = θ and G > 0,
and when n11

n+1
≤ θ then p̃1|1 = p̂1|1 and G = 0. This allows us to rewrite G as

(A.3) G =
(

2n11 log
[

n11

n+1θ

]
+ 2n01 log

[
n01

n+1(1− θ)

])
I

(
n11

n+1
> θ

)

where n+1 = n11 + n01. As a practical matter, when making calculations with real
data the often-used definition 0 log(0) = limx↓0 x log(x) = 0 is invoked.

G has an asymptotic distribution which is related to the χ2 distribution with one
degree of freedom. Since the test is one-sided the actual distribution is 1/2χ2

0+1/2χ2
1

(Self and Liang, 1987; their case 5). Tests are carried out similar to a standard
χ2

1 test, except that where a normal χ2
1 statistic W has that P (W > w) = α;

here, because there is a probability mass of 1/2 at 0, the χ2
1 statistic G has that

P (G > w) = α/2. In practice, the user only has to double his chosen test level and
use an ordinary χ2

1 distribution. Equivalently, one can half the p-value.
It is easy to show, because of the symmetry of the problem, that the null hy-

pothesis when p > θ is H0 : p0|0 ≥ 1 − θ. The complete null combines this with
an indicator I(p > θ) with the null in A.2 with an indicator I(p ≤ θ). The test
statistic G in (A.3) for p > θ is

(A.4) G =
(

2n00 log
[

n00

n+0θ

]
+ 2n10 log

[
n10

n+0(1− θ)

])
I

(
n00

n+0
> θ

)

A.2. Climate skill score. Testing the significance of a skill score is the same as
the climate skill test if the following skill score is taken

(A.5) K = K(y, xE) =
E(kN )− E(kE)

E(kN )
,

where the expected forecast loss is taken as the error score. A collection of perfect
expert forecasts will have a loss of 0, so, for us, a perfect skill score will be K ≡ 1.
A collection with “negative” skill, as defined in (A.1), will have either an expected
loss the same as the naive forecasts or even greater so that the skill score will be 0
or less. The null hypothesis is

(A.6) H0 : K ≤ 0.

It can be easily seen that this translates exactly to the hypothesis and test used
before, defined in (A.2).

An estimate for the skill score is

K̂θ =
p̂(1− θ)− θ(1− p̂1|1)p̂+1 − (1− θ)p̂1|0(1− p̂+1)

p̂(1− θ)

=
(p̂1|1 − θ)p̂+1

p̂(1− θ)

=
n11(1− θ)− n01θ

(n11 + n10)(1− θ)
.(A.7)
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For general verification purposes a plausible loss is symmetric loss, that is θ = 1/2.
Symmetric loss is further justified below. Symmetric loss gives

(A.8) K̂1/2 =
n11 − n01

n11 + n10
.

This has a particularly simple form which shows easily whether forecasts have
skill: this is when n11 > n01, which makes K̂1/2 > 0. Our score for symmetric loss
is also similar in form to other skill scores which are summarized in, among other
places, Wilks (1995).

Let I0 = I(p ≤ θ) and I1 = 1− I0. Finally, and in full form, the estimate of the
skill score is

(A.9) K̂θ =
n11(1− θ)− n01θ

(n11 + n10)(1− θ)
I0 +

n00θ − n10(1− θ)
(n00 + n01)θ

I1.

A.2.1. Brier score. The most popular score is the Brier score, which is given as

B = (Y −X)2.

Our climate skill score and the Brier score have an interesting relationship.
BR prove that (1) Testing for skill using the Brier score, where skill is defined

as when a collection of expert predictions have a lower Brier score than the Brier
score for the optimal naive predictions, is equivalent to the climate skill test with
symmetric loss, and (2) A collection of predictions has skill (with symmetric loss)
when B̂ < p̂, where B̂ =

∑
(Yi −Xi)2. Further, B̂ = p̂(1 − K̂1/2). A collection of

forecasts has skill (with symmetric loss) when K̂1/2 > 0, so that skillful forecasts
have B̂ < p̂.

A.2.2. Loss for perfect forecasts. It is possible to add loss for making correct pre-
dictions (losses which we assume are less than the losses for making an incorrect
prediction). Let k11 and k00 be the losses for making correct predictions with the
minimal requirement that k00 < k01 and k11 < k10. It’s easy to show that, using
the definition of skill that a collection of expert predictions has less expected loss
than a collection of optimal naive predictions, that the null originally given in (A.2)
is modified to

(A.10) p1|1 ≤
k01 − k00

k01 − k00 + k10 − k11
= θ′.

Calculation of the test statistic and so on goes on as before. An example of this is
the Value Score (VS) proposed in Wilks (2001) which was developed in the cost-loss
scenario. Wilks has that a perfect prediction has either a loss k11 = k01 or a loss
k00 = 0. Loss for imperfect prediction is the same as before. In these situations it
only makes sense to talk of losses where k01 < k10; see Wilks (2001) for a complete
explanation. We have V S = (E(kN ) − E(kE))/(E(kP ) − E(kN )) where E(kP ) is
the expected loss for a perfect prediction. This gives an estimate of

V̂ Sθ =
n11(1− 2θ)− n01θ

(n11 + n10)(1− 2θ)
.

which is nearly the same as Kθ. This is highlighted in the V S hypothesis test for
skill, which in this case is

H0 : p1|1 ≤
θ

1− θ
.
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Table 4. The four separate cases where different optimal naive
forecasts are implied. The conditions are set in the Prob. columns,
with the optimal naive forecasts listed.

Case Prob. Optimal Naive Prob. Optimal Naive
1 p0+|1 ≤ 1− θ 1 p0+|0 ≤ 1− θ 1
2 p0+|1 ≤ 1− θ 1 p1+|0 ≤ θ 0
3 p1+|1 ≤ θ 0 p0+|0 ≤ 1− θ 1
4 p1+|1 ≤ θ 0 p1+|1 ≤ θ 0

For small θ, which is likely in the cost-loss problem, θ ≈ θ/(1 − θ), and for larger
θ < 1/2 the skill test based on the Value Score is more conservative because θ/(1−
θ) > θ.

A.2.3. Skill and dependence. BR also show that skill is stronger than the condition
of dependence (the usual tests for 2× 2 tables), and that skill implies dependence.

Appendix B. Markov Details

There are four cases to capture all the possibilities when {Yi} is Markov. These
correspond to the probabilities pij which, depending on their values, represent
different optimal naive forecasts.

We developed Case 4 earlier. These four cases imply four separate null hypothe-
ses. These are
Case (1)

H0,1 : P (Yi = Xi|Yi−1 = 1) ≤ P (Yi = 1|Yi−1 = 1),
P (Yi = Xi|Yi−1 = 0) ≤ P (Yi = 1|Yi−1 = 0).

Case (2)

H0,2 : P (Yi = Xi|Yi−1 = 1) ≤ P (Yi = 1|Yi−1 = 1),
P (Yi = Xi|Yi−1 = 0) ≤ P (Yi = 0|Yi−1 = 0).

Case (3)

H0,3 : P (Yi = Xi|Yi−1 = 1) ≤ P (Yi = 0|Yi−1 = 1),
P (Yi = Xi|Yi−1 = 0) ≤ P (Yi = 1|Yi−1 = 0).

Case (4)

H0,4 : P (Yi = Xi|Yi−1 = 1) ≤ P (Yi = 0|Yi−1 = 1),
P (Yi = Xi|Yi−1 = 0) ≤ P (Yi = 0|Yi−1 = 0).

Or, incorporating the possibility of asymmetric loss,

H0,1 : (p0|01 ≤ 1− θ, p0|00 ≤ 1− θ)
H0,2 : (p0|01 ≤ 1− θ, p1|10 ≤ θ)
H0,3 : (p1|11 ≤ θ, p0|00 ≤ 1− θ)
H0,4 : (p1|11 ≤ θ, p1|10 ≤ θ).

Likelihood ratio statistics are found in the same manner as before. The results
are:
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Case (1)

G1M = 2n101 log
(

p̂1|01
p̃1|01

)
+ 2n001 log

(
1− p̂1|01
1− p̃1|01

)
+

2n100 log
(

p̂1|00
p̃1|00

)
+ 2n000 log

(
1− p̂1|00
1− p̃1|00

)
.

Case (2)

G2M = 2n101 log
(

p̂1|01
p̃1|01

)
+ 2n001 log

(
1− p̂1|01
1− p̃1|01

)
+

2n110 log
(

p̂1|10
p̃1|10

)
+ 2n010 log

(
1− p̂1|10
1− p̃1|10

)
.

Case (3)

G3M = 2n111 log
(

p̂1|11
p̃1|11

)
+ 2n011 log

(
1− p̂1|11
1− p̃1|11

)
+

2n100 log
(

p̂1|00
p̃1|00

)
+ 2n000 log

(
1− p̂1|00
1− p̃1|00

)
.

Case (4)

G4M = 2n111 log
(

p̂1|11
p̃1|11

)
+ 2n011 log

(
1− p̂1|11
1− p̃1|11

)
+

2n110 log
(

p̂1|10
p̃1|10

)
+ 2n010 log

(
1− p̂1|10
1− p̃1|10

)
.

A slightly different notation will be needed to keep track of the different skill
scores for the different cases. Let Kij,θ be the climate skill score for optimal naive
forecast i when the day before Y−1 = j. For example, in Case 4, the climate skill
score estimate is now

K̂4,θ =
p̂1+|1p̂

p̂y
K̂01,θ +

p̂1+|0(1− p̂)
p̂y

K̂00,θ,

where K̂01,θ is the climate skill score for those days in which Y−1 = 1 and the
optimal naive forecast is 0, and K̂00,θ is the climate skill score for those days in
which Y−1 = 0 and the optimal naive forecast is 0. To be complete,

K̂0j,θ =
n11j(1− θ)− n01jθ

(n11j + n10j)(1− θ)
,

and

K̂1j,θ =
n00jθ − n10j(1− θ)

(n00j + n01j)θ
.

Skill scores are slightly more complicated, except in Case 1 and Case 4 (which
was derived earlier). Case 1 is similar to Case 4 because no matter the value of
Yi−1 the optimal naive forecast is always 1 in Case 4 the optimal naive forecast is
always 0). Because of this, the skill score for Case 1 is easy:

K̂1,θ =
p̂0+|1p̂
1− p̂y

K̂11,θ +
p̂0+|0(1− p̂)

1− p̂y
K̂10,θ,
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Cases 2 and 3 are more difficult, but related. Focus on Case 3, where the optimal
naive forecast on day i is 0 on those days when Yi−1 = 1 and is 1 on those days
when Yi−1 = 0. The expected loss for the optimal naive forecasts is

p(1−θ)(p1|11p+1|1+p1|01(1−p+1|1))+(1−p)θ((1−p1|10)p+1|0+(1−p1|00)(1−p+1|0)).

Substituting the estimates of these parameters gives

D = (1/n)((1− θ)(n111 + n101) + θ(n010 + n000)).

The expected loss of the optimal naive forecast minus the expected loss of the
expert forecasts is

pp+1|1(p1|11 − θ) + (1− p)(1− p+1|0)(θ − p1|00).

After substituting the expected values we get

(1/n)(n111(1− θ)− n011θ + n000θ − n100(1− θ)).

We now arrive the estimate for K3,θ

K̂3,θ =
(n111 + n101)(1− θ)
(n111 + n101)(1− θ)

n111(1− θ)− n011θ

D
+

(n111 + n101)(1− θ)
(n111 + n101)(1− θ)

n000θ − n100(1− θ)
D

=
(n111 + n101)(1− θ)

D
K̂11,θ +

(n111 + n101)(1− θ)
D

K̂10,θ.

Now,

(n111 + n101)(1− θ)
D

=
n111 + n011 + n101 + n001

n111 + n011 + n101 + n001

(n111 + n101)(1− θ)
D

= (1− θ)p1+|1
n111 + n011 + n101 + n001

D
.

Further,

D

n111 + n011 + n101 + n001
=

(1− θ)(n111 + n101)
n111 + n011 + n101 + n001

+

(1− θ)(n010 + n000)
n111 + n011 + n101 + n001

= (1− θ)p̂1+|1 + θp̂0+|0
1− p̂

p̂
.

So,
(n111 + n101)(1− θ)

D
=

(1− θ)p1+|1
(1− θ)p̂1+|1 + θp̂0+|0

1−p̂
p̂

.

This can also be written

(n111 + n101)(1− θ)
D

=
(1− θ)P̂ (Yi = Yi−1 = 1)

(1− θ)P̂ (Yi = Yi−1 = 1) + θP̂ (Yi = Yi−1 = 0)
.

Similarly,
(n111 + n101)(1− θ)

D
=

θp0+|0
θp̂0+|0 + (1− θ)p̂1+|1

p̂
1−p̂

.
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Which is also

(n111 + n101)(1− θ)
D

=
θP̂ (Yi = Yi−1 = 0)

θP̂ (Yi = Yi−1 = 0) + (1− θ)P̂ (Yi = Yi−1 = 1)
.

This finally gives

K̂3,θ =
(1− θ)p1+|1

(1− θ)p̂1+|1 + θp̂0+|0
1−p̂

p̂

K̂01,θ +
θp0+|0

θp̂0+|0 + (1− θ)p̂1+|1
p̂

1−p̂

K̂10,θ.

A similar argument leads to the estimate of K2,θ

K̂2,θ =
θp0+|1

θp̂0+|1 + (1− θ)p̂1+|0
p̂

1−p̂

K̂11,θ +
(1− θ)p1+|0

(1− θ)p̂1+|0 + θp̂0+|1
p̂

1−p̂

K̂00,θ.
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