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Abstract

The purpose of the equitable threat or various related scores is to provide information on model’s
accuracy in placing precipitation above a given threshold.  Yet, they do not quite manage to achieve this
because of their dependence on bias, so that a subjective assessment of how and how much these scores
might have been affected by the model bias is customary.  Conversely and as an opportunity for
improving scores in a manner that can be considered as ethically questionable, common wisdom has it that
a bias somewhat greater than one is profitable.

It is shown that a more satisfactory state of affairs can be arrived at.  A simple assumption of the
increase of hits per unit increase in bias being proportional to the yet unhit area enables calculation of the
number of hits normalized to a perfect bias.  Thus, normalization of the equitable threat and related scores
to perfect bias is possible.  Assumption of the odds ratio being independent of bias can be used to the same
end.  Examples of the resulting bias normalized equitable threat scores of several operational NCEP
models are presented.

1.  Introduction

The purpose of the threat scores, standard or equitable, is to assess the skill of a model in
placing its forecasts of an event, say precipitation above a given threshold.  There are quite a few
other statistical quantities aiming for roughly the same objective, but equitable threat may well
be the most popular.  The problem of the skill assessment in a situation where there is a forecast
of an event, that can either occur or not occur, is of course quite general, common to many fields.
Note Murphy (1996) for an entertaining account of the early weather prediction efforts of more
than a century ago, with various quantities reintroduced and renamed later, some more than
once.  The reason why threat and equitable threat score (or, Gilbert score, Schaefer 1990) are in
meteorology more popular than some of the other measures is that threat and equitable threat
emphasize skill in forecasting the occurrence of the event more than they do the skill in
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forecasting the non-occurrence of the event.  Successful forecast of a heavy rain event, say more
than an inch in 24 hours, certainly results in more respect for the forecaster than does a
successful forecast that this heavy rain will not occur, few will disagree.

Over the years, a persistent problem in using the equitable threat score, or some of the
alternative measures, was their dependence on bias.  Thus, typically, when displaying an
equitable threat score plot, the corresponding bias plot would be displayed as well, and would
have to be taken into account.  Many examples to that effect could be referred to, for a recent one,
see, e.g., Ebert et al. (2003).  Assessing to what extent model's placement forecasts were accurate,
one would inspect not only the threat score plot but its bias plot as well.  Or, comparing the
relative placement performance of two models, their relative bias performance would have to be
taken into account.  The subjective nature of this procedure clearly diminishes the value of the
conclusions made.

Efforts to alleviate this annoying situation seem so far to have been less than entirely
successful.  If we do have a contingency table with four outcomes, forecasts of yes and no, and
occurrences of yes and no -- which is not always the case -- "hedging" is available (Stephenson
2000).  For example, with bias greater than one, one can randomly remove forecasts so as to
obtain a bias of one.  Given that model forecasts are not random, this clearly is not a very
attractive scheme.

Hamill (1999) presents an illustration how an equitable threat of a forecast with perfect bias
would increase, up to a point, if contours were to be relabeled toward an inflated bias.  This
underscores a general understanding that for optimum threats a bias somewhat above one is
needed, which is clearly a goal deserving less than a complete respect.  Hamill's example
suggests that, conversely, with a bias different from one and a contour plot available, relabeling
isolines toward elimination of bias is a possible technique.  The same idea can be pursued clearly
also with no contours, by way of relableling the forecast values.  But there are obvious problems:
when is the relabeling to be done, for each forecast, or after collecting a sample, e.g., a month’s
worth, of 

† 

F , 

† 

H , 

† 

O  (forecast, hits, and observed) values for a set of precipitation categories?
Presumably the latter, followed by interpolation to arrive at bias equal to one.  How does one
interpolate to arrive at hits corresponding to bias of one is not obvious.  Besides, interpolation
from the lowest category, or categories, is or may not be possible when the bias is less than one.

There are other efforts to verify precipitation using approaches that do not suffer from the
bias problem, or alleviate it in a way that is related to the idea of Hamill (e.g., Ebert and McBride
2000; Atger 2001).  But it seems to us that, nevertheless, the simplicity of the threat or equitable
threat, and the widespread use they enjoy, make the correction of these for the impact of bias a
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worthwhile goal.  We shall look into two possibilities we have pursued to achieve that.  The two
sections to follow will each be devoted to presenting one of our two methods.  This will be
followed by examples of the results, and by brief overall comments.

2.  The dH/dF method

We want to correct or adjust the threat or equitable threat for the impact of bias, or, bias
normalize one or the other of these scores.  In other words, we wish to obtain their values
corresponding to bias of one.  To that end, one needs an assumption how should the number (or,
area) of hits, 

† 

H , be expected to increase with an increase in the number (area) of forecast events,

† 

F .  For ease of analysis, let us assume that these are continuous quantities, as well as the area of
observed events, O.  Results can be dicretized later.

Whatever the model's inherent skill, one should expect that it is easier for a model to score a
hit, or increase its hits area, when the availability of events that yet remain to be hit is greater.
Thus, we assume that the increase in hits area per unit increase in 

† 

F  is proportional to O-H,

† 

dH
dF

= a(O - H),  

† 

a = const . (1)

Solution of (1) is

† 

H(F) = be-aF + O ,  

† 

b = const . (2)

Since we have 

† 

H = 0  for 

† 

F = 0 ,  we obtain

† 

b = -O .
Thus,

† 

H(F) = O 1- e-aF( ) . (3)

Solving for

† 

a , this gives

† 

a = -
1
F

ln 1-
H(F)

O
Ê 

Ë 
Á 

ˆ 

¯ 
˜ . (4)

We can calculate 

† 

a  from a known set of values of 

† 

H , 

† 

F , and 

† 

O , insert it into (3), and use it to
obtain the value of 

† 

H  adjusted for bias.  Denote this known set of values by 

† 

Hb , 

† 

Fb , and 

† 

O  (note
that 

† 

O  is considered given; we are only aiming to determine how 

† 

H  should change with 

† 

F ).
Thus,
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† 

a = -
1
Fb

ln 1-
Hb

O
Ê 

Ë 
Á 

ˆ 

¯ 
˜ . (5)

Inserting this into (3) results in

† 

H(F) = O 1-
O - Hb

O
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

F
Fb

Ê 

Ë 

Á 
Á 

ˆ 

¯ 

˜ 
˜ 
. (6)

This is the desired dependence of 

† 

H  on 

† 

F .  We just need the specific value of 

† 

H  corresponding
to bias being 1, that is, for 

† 

F  = 

† 

O ; let us denote it as 

† 

Ha  (

† 

H  adjusted)

† 

Ha = O 1-
O - Hb

O
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

O
Fb

Ê 

Ë 

Á 
Á 

ˆ 

¯ 

˜ 
˜ 
. (7)

There is no need any more to differentiate between specific values of 

† 

H  and 

† 

F , 

† 

Hb  and 

† 

Fb

above, used to determine 

† 

a  in (3), and 

† 

H  as a function of 

† 

F .  We can thus omit the subscripts b
above, and write

† 

Ha = O 1-
O - H

O
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

O
F

Ê 

Ë 

Á 
Á 

ˆ 

¯ 

˜ 
˜ 
. (8)

This permits one to calculate the threat or equitable threat score adjusted for bias, that is, its
value corresponding to 

† 

F = O.  When doing this, 

† 

F = O should of course be used for hits due to
chance, that is, use 

† 

E(H) = FO /N = OO /N , 

† 

N  here being the total number of events.

For a simple numerical example, consider a very rare event, observed at 100 points out of a
total of 300 x 200 = 60,000; with 

† 

F  = 50 and 

† 

H  = 20.   In this case correction for chance events is
very small, 

† 

FO /N = 0.08333...  One obtains for the equitable threat, 

† 

Te

† 

Te = 0.1533...
(8) results in

† 

Ha = 36 .

Note that with the first 50 forecast points resulting in 20 hits, the next 50, according to (8), results
 in only 16 additional hits. With only 80 event-points left, as opposed to 100 available with

† 

F = O, it is harder for the model to achieve new hits.
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To obtain bias adjusted equitable threat, 

† 

Tea , we use 

† 

Ha , and 

† 

FO /N = OO /N = 0.1666... ,
resulting in

† 

Tea = 0.2187...

an increased value compared to 0.1533.

3.  The odds ratio preserving method

Stephenson (2000) has argued that the “odds ratio”, widely used in medical studies, is a
powerful measure for verification of categorical forecasts, listing a number if its useful
properties.  Note its recent use for precipitation by Goeber and Milton (2002).  The “odds”, or the
“risk” of an event, is the ratio of the probability of an event occurring to the probability of the
event not occurring.  Stephenson writes his odds ratio definition in terms of non-marginal
contingency table elements, hits, false alarms, misses, and correct forecasts of non-occurrence,
denoted by

† 

a , 

† 

b, 

† 

c  and 

† 

d , respectively.  For ease of reference relative to the notation 

† 

H , 

† 

F , and

† 

O  of the preceding section, we are displaying an example of a possible pattern in Fig. 1.

O 
H 

a
b

c

d

F 

Fig. 1.  Schematic of the relationship between the forecast, F, hits, H, and observed, O, values, and the
non-marginal contingency table elements, a, b, c, and d.

The odds ratio, 

† 

q , as stated by Stephenson (2000), is “the ratio of the odds of making a hit
given that the event occurred to the odds of making a false alarm given that the event failed to
occur”.  The former of the odds’ is defined as

† 

a
a + c

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 1-

a
a + c

Ê 

Ë 
Á 

ˆ 

¯ 
˜ , (9)
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and the latter as

† 

b
b + d

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 1-

b
b + d

Ê 

Ë 
Á 

ˆ 

¯ 
˜ . (10)

Thus, the odds ratio is

† 

q =

a
a + c

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 1-

a
a + c

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

b
b + d

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 1-

b
b + d

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

, (11)

which results in

† 

q =
ad
bc

. (12)

The numerator of (9), 

† 

a /(a + c) , is referred to as the hit rate, or probability of detection, and
that of (10), 

† 

b /(b + d) , the false alarm rate.  In the 

† 

H , 

† 

F , 

† 

O  and 

† 

N  notation of the preceding
section, they are equal to 

† 

H /O, and 

† 

(F - H) /(N - O) , respectively.  Thus, after rearrangement,
(11) can also be written as

† 

q =
H(N - O - F + H)
(O - H)(F - H)

. (13)

To adjust to bias equal to unity under the assumption of the preservation of odds ratio, first 

† 

q

is computed using (13).  Then, with 

† 

F  set to 

† 

O , (13) is solved for the adjusted value of 

† 

H , 

† 

Ha ,
giving

† 

Ha = O +
N

2(q -1)
- O +

N
2(q -1)

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

-
q

q -1
O2

1
2

(14)

The adjusted set of 

† 

F , 

† 

H , 

† 

O  values becomes 

† 

F =

† 

O , 

† 

Ha  , 

† 

O .  These values are used to compute
odds ratio preserving bias adjusted scores.  This method of adjustment assures that both the
forecast and the adjusted forecast lie on the same relative operating characteristic (ROC) curve as
parameterized in terms of the odds ratio (Stephenson 2000).  A ROC curve is graphed by plotting
the probability of detection against the false alarm rate for a collection of forecast verifications.
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4.  Examples: 12 months of three model scores

For examples of the impact, we shall show precipitation scores of three NCEP operational
NWP models over two regions of the contiguous United States (ConUS).  One is the Global
Forecast System (GFS), containing the NCEP operational global model, referred to also as GFS.
The other is the short range (out to 3.5 days) Eta model, run at 12 km horizontal resolution.  The
Eta model is a limited area model, obtaining its lateral boundary conditions from the GFS run of
6 h earlier.  As of summer 2002, a still higher resolution model, NMM (Nonhydrostatic
Mesoscale Model) is run over six “high resolution windows” covering the ConUS area, Alaska,
Hawaii, and Puerto Rico.  The domains of the Eta and the NMM models are shown in Fig. 2.
Over its three ConUS domains the NMM is run at 8 km horizontal resolution.

Comparison of the relative performance of these models is of interest for numerous reasons.
While there are a number of verification efforts in place, precipitation equitable threat scores, as

Fig. 2.  Domains of the Eta 12 km operational model, heavy black line, and of the “high resolution
windows” of the nested NMM model (Nonhydrostatic Mesoscale Model), dashed color lines.
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described earlier in combination with the bias scores, are certainly among those of most interest
if not in fact the statistic of most interest (e.g., Mesinger 1996).  QPF scores over the three ConUS
NMM domains have become available within the NCEP Forecast Verification System (FVS) as of
September 2002.  Verification on these NMM domains is performed on a 12 km verification grid.
Forecasts of models with resolution or native grid different from the verification 12 km grid are
remapped to the verification grid.  In this procedure precipitation is considered constant over the
model grid-box, and is numerically integrated to the verification grid, with a desired accuracy.

In the Eta and NMM performance comparison issues of interest include those of the expected
benefit from the increased resolution of the NMM compared to the Eta, and perhaps from its
nonhydrostatic feature.  The increase in model resolution is believed to be an important factor for
improvement of forecasts of intense precipitation (e.g., Buizza et al 1997).  Besides, in the NMM
the eta coordinate of the Eta has been abandoned in favor of the traditional terrain-following
(sigma) coordinate.  This was based primarily on problems encountered with downslope
windstorms using the eta (Janjic 2002, and references therein), and perhaps on a general
expectation that this is a sign of difficulties to be expected with the eta as the resolution is
increased.  But just the opposite could also be expected (Mesinger, this CD).  With these issues at
hand, comparison of the relative performance of the Eta and the NMM over the Eastern Nest
(“East”), where there is little influence of topography, and over the Western Nest (“West”),
where the topography is dominant, could offer significant clues as to what the dominant impacts
actually are.

Equitable threat and bias scores for the first 12 months of the availability of scores over the
NMM domains are shown in Figs. 3 and 4, for the East, and for the West, respectively.  In the
East, threats of the Eta and the NMM are just about the same, if anything, those of the Eta are
slightly better.  Biases of the two are very nearly the same as well.  Thus, no benefit from higher
resolution, 8 vs 12 km, is seen in QPF scores.  There could of course exist handicaps that the
NMM was facing relative to the Eta which might have prevented it from generating overall
better scores; it is not within the scope of the present paper to go into such issues.

The GFS over the East, shows threats much better that the Eta and the NMM for higher
intensity categories, and an inferior threat score for the lowest category of 0.01 inch/24 h.  But it
has a much higher bias than the Eta and the NMM for higher categories, and a considerably
higher bias for the three lowest categories.  While the huge threat advantage for higher categories
could hardly have resulted from higher bias alone, the impact of bias at the lowest category is
not easy to tell.

Over the West, where one would expect the higher resolution topography of the 8-km model
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Fig. 3.  12-month precipitation equitable threat (upper panel) and bias scores (lower panel) for three NCEP
operational models, “Eastern Nest”, 18-42 h forecasts.  See text for further detail.
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Fig. 4.  12-month precipitation equitable threat (upper panel) and bias scores (lower panel) for three NCEP
operational models, “Western Nest”, 6-30 h forecasts.  See text for further detail.
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to be of a particular advantage, the Eta 12-km model is seen to have equitable threats
substantially better than the 8-km NMM.  The Eta advantage was particularly striking in
situations of intense precipitation over the western United States in November and December
2002 (http://wwwt.emc.ncep.noaa.gov/mmb/ylin/pcpverif/scores/), with five events of HPC
analyzed precipitation over 4 inches/24 h, and two of these with precipitation over 6 inches/
24 h.  At these events, the highest precipitation monitored of 3 inches/24 h, would typically be
analyzed over individual and separated mountain ranges, Cascades, Coast Ranges, and Sierras,
with elongated and clearly topographically defined patterns that are generally considered an
extraordinary QPF challenge.  At the same time, both high resolution models are having threats
better than the GFS, the Eta much better.  But with the elevated bias of the NMM at medium
categories, one may wonder if the disadvantage of the NMM compared to the Eta is at least
partly a result of its bias problem. Just as well, one may wonder if the inferior threats of the GFS
at the lowest categories are the result of its considerably increased bias.

These are precisely the issues which bias normalization ought to help resolve.  This being now
available within the NCEP FVS, we have generated bias normalized equitable threats for the two
domains using one and the other of the two methods.  In Fig. 5 we are displaying the threat plots
for the East, those of the upper panel of Fig. 3, bias normalized using the dH/dF method, upper
panel, and using the odds ratio method, lower panel.  Bias normalized scores for the West, those
of the upper panel of Fig. 4, are shown in Fig. 6.

The two sets of bias normalized threats for the East, Fig. 5, are seen to be very similar, except
at the lowest category.  With both methods, with the equitable threat penalty for the high bias of
the GFS at the lowest categories removed, the GFS is seen to be uniformly superior to the two
mesoscale models across all categories.  At the lowest category, the dH/dF method is seen to
reward the GFS considerably more than the odds ratio method.  The reason for this is that with
the probability of detection, 

† 

H /O, as high as that of the GFS at this lowest category, 0.92, the
basic assumption of the dH/dF method, (1), distributes most of the hits for values of 

† 

F /O  less
than one, so that the reduction in hits resulting from the reduction of bias to one is considerably
smaller than it is with the odds ratio method.  In case one feels that the bias normalized threat
the GFS was accorded to by the dH/dF method at 0.01 inch/24 h is too large, one might find
some comfort in the fact that the GFS’ standard threat at this category is still considerably
greater, about 0.60.

The same two plots but for the West, Fig. 6, are again quite similar, except at the lowest
category.  At that category the dH/dF method once more rewards the GFS more than the odds
ratio method.  But the results show that, except at this lowest category, equitable threats of the
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Fig. 5.  Equitable threat scores as in the upper panel of Fig. 3, but normalized to remove the effect of bias
using the “dH/dF  method”, upper panel, and using the odds ratio method, lower panel.
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Fig. 6.  Equitable threat scores as in the upper panel of Fig. 4, but normalized to remove the effect of bias
using the “dH/dF  method”, upper panel, and using the odds ratio method, lower panel.
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GFS and those of the NMM have not been depressed compared to those of the Eta due to the
higher biases of these models.  Quite to the contrary, it is seen that the increased biases of the
GFS and  the NMM of about 1.2 at medium categories, have been helping these models to
achieve higher equitable threats, just as we said earlier “common wisdom” has it it should
happen.  As a result, the overall advantage of the Eta over the other two models in the West is
seen to be higher when adjusted for bias than it seemed to be on account of the equitable threats
alone, the upper panel of Fig. 4.

5.  Discussion

To adjust threat or equitable threat scores to bias so as to arrive at scores corresponding to
bias of one, an assumption is needed.  The assumption of the dH/dF method, (1), is
straightforward, and its single free parameter, assumed constant, can be determined from the
available 

† 

F , 

† 

H , 

† 

O  values.  The integration constant, 

† 

b, is determined from the obvious
condition that if 

† 

F  were equal to zero, 

† 

H  must be zero as well.  Thus, what occurs as a result is a
score based on hits resulting from interpolation, or extrapolation, of the obtained function 

† 

H(F)
to the value of 

† 

F = O.

If interpolation or extrapolation is performed to a relatively distant value of 

† 

F , one might be
uncomfortable about the outcome.  We have already expressed concern about the GFS value
obtained at the lowest category in the upper panel of Fig. 5.  A possible attitude is to note that
threat scores are really meant to emphasize hits, correct forecasts of an event, and not so much
correct forecasts of no event, and that correct forecasts of no event played a large role at this
category.  Events observed to all elements ratio, 

† 

O /N , at this category, was about 0.4.  Yet
another option is to try to refine the dH/dF scheme, by improving on the 

† 

a = const  assumption.
Note that as 

† 

F Æ N  hits should approach 

† 

O , a property that the odds ratio scheme has but the
dH/dF scheme does not.  But there likely are considerations that should have higher priority in
attempting to improve on the 

† 

a = const  assumption if this indeed were desirable, such as
perhaps some based on actual model performance data.

The symmetry of the odds ratio scheme, (12), is esthetically appealing.  Yet, the scheme could
also be criticized for the same reason, in that it fails to emphasize hits compared to the correct
forecasts of no event.  Note that the numerators of (9) and (10) are used as axes to plot the
relative operating characteristic (ROC) curve of Mason, a performance measure that appears to
be gaining in popularity (Stephenson 2000; Atger 2001).  According to Stephenson (2000), “The
odds ratio is almost invariant with decision threshold” which supports the assumption of the
conservation of odds ratio as a legitimate method of bias correction.  At the same time, this is
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suggestive of the method representing an approximation to or a variation of the Hamill method
of contour relabeling, the appealing side being that the actual performance of the model is taken
advantage of, as opposed to working with a hypothetical model behavior.  Baldwin and Kain
(2004), after examining a number of performance measures, find that the odds ratio skill score,

† 

(q -1) /(q +1) , of measures examined, “is the least sensitive to bias error and the event
frequency”, which also would seem to support the reasonableness of the assumption of the odds
ratio scheme.

But whatever the preference of a potential user, or further developments concerning the
issues raised, we feel that the basic question is one of whether the set of bias normalized
equitable threat and bias scores gives better model QPF information than the set of standard
equitable threat and bias scores, that we tend to use today.  We are convinced that it is, since the
bias normalized threats can hardly fail to give information on model precipitation placement
errors much less influenced by model bias than the standard threats are.  Various issues here
only touched upon we expect will become clearer as a result of additional work, some of which
we hope to do ourselves.

Acknowledgements. Joseph Schaefer, of the Storm Prediction Center, pointed out the
desirability of “Unbiasing the CSI” (subject line of his e-mail, 2002), and has suggested the term
“bias normalization”.  Extensive discussions with Mike Baldwin, of the National Severe Storms
Laboratory, have been most helpful in advancing our understanding of the behavior of the
dH/dF scheme; Mike Baldwin has also introduced us to some of the related work in the area.
Eric Rogers, of the Environmental Modeling Center (EMC), generated the plot we show in Fig. 2.
Ying Lin, also of EMC, is maintaining the EMC’s precipitation verification system, a component
of the Climate Prediction Center’s (CPC) forecast verification system, maintained by Keith Brill.
These systems were used to generate the plots shown in Figs. 3 to 6.
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