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ABSTRACT

Earth system and environmental models present the scientist/programmer with multiple
challenges in software design, development, and maintenance, overall system integration,
and performance.  We describe how work in the industrial sector of software
engineering—namely component-based software engineering—can be brought to bear to
address issues of software complexity.  We explain how commercially developed
component solutions are inadequate to address the performance needs of the Earth system
modeling community.  We describe a component-based approach called the Common
Component Architecture that has as its goal the creation of a component paradigm that is
compatible with the requirements of high-performance computing applications.  We
outline the relationship and ongoing collaboration between CCA and major
Climate/Weather/Ocean community software projects.  We present examples of work in
progress that uses CCA, and discuss long-term plans for the CCA-climate/weather/ocean
collaboration.
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1 Introduction

Climate/weather/ocean1 (CWO) applications abound with challenges in high-performance
computing, software development, and data management. Forecasters require highly
reliable software. Researchers require analysis tools that offer ease of use and flexibility.
Modelers desire access to powerful numerical schemes and acceleration of the model
development/validation cycle.  The existence of millions of lines of legacy Fortran code
and the advent of modern programming languages such as C++ and scripting languages
such as Python introduce a language barrier to be surmounted.  The above desirable
characteristics can be summarized as: quality, code resulting from a rigorous
development process that includes peer review during the requirements, design, and
implementation phases, and also is subject to testing; modularity, code that is designed to
be re-usable in multiple contexts; flexibility, code that is easily adapted to meet new user
requirements; extensibility, a code base that can be expanded with ease to support new
applications; language interoperability, the ability to connect code modules implemented
in different languages; and performance, the ability of the application to produce
desirable results within a reasonable user timeframe.

We believe the software quality, modularity, flexibility, extensibility, and language
interoperability requirements can easily be met through component-based software
engineering, an approach that is well established in the commercial software engineering
community.  We will defer the formal definition of components until Section 2, but for
now it is sufficient to say a component is a code entity that serves a well-defined atomic
function, or an often-desired combination of atomic functions, that constitutes a
fundamental building block that can be used in combination with other components to
construct an application.  Component-based approaches address the issue of quality
through dedicated components that incorporate the best practices/algorithms for a
particular function.  Components are the natural consequence of a quest for modularity.
Large collections of components serving a particular function create flexibility by
allowing the user to choose the most appropriate component to solve the problem at hand.
Extensibility is achieved by adding new components serving new or previously
unforeseen functionalities.  General language interoperability is achieved through the use
of interface definition languages, which will be discussed in greater detail in section 2.

At this point it is natural to ask why the CWO community has not embraced the
component approach.  The chief reason is the final desirable characteristic listed above,
performance.  Computational science and in particular CWO applications have a high
degree of computational complexity, and performance, as defined by useful metrics such
as time-to-solution or throughput has been of paramount importance.  A natural
consequence of this has been the construction of tightly written legacy codes in which
functionalities are sometimes entangled because this approach yields superior
performance.  The advent of distributed-memory parallel computing paradigms such as

                                                  
1 The authors are aware that the computational science and software engineering problems discussed in this

paper apply across the whole spectrum of earth system and environmental modeling, and their
comments regarding CWO apply to this whole field of endeavor.
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MPI2 have further raised the bar for any different software paradigm to enter the CWO
application arena.

In Section 2 we describe component-based software engineering and the Common
Component Architecture.  In Section 3 we report on ongoing collaborations between
CCA and major CWO community projects.  In Section 4 we summarize progress made
and outline future work.

2 Components and the Common Component Architecture

In this section we describe the background of component-based software engineering,
describe component approaches originating from the commercial sector, and explain the
need for a distinct component approach specifically tailored to high-performance
computing.

2.1 Component-Based Software Engineering

Component-based software engineering (CBSE) is an emerging approach to help manage
the complexity of large-scale software systems and increase the productivity of software
developers and users. In CBSE, units of software are encapsulated as "components,"
which interact with other components only through well-defined interfaces. This
approach allows the internal implementation of the component to remain opaque to the
rest of the world, and presumably hides much of the complexity of the software. These
more manageable units of software can be composed together to form applications; in
many cases, well-designed components will be reusable across a number of different
applications without internal changes. Components also provide a natural decomposition
of applications involving multiple time or length scales, or multiple physical phenomena
such as CWO codes.

When many components are available that conform to standardized interfaces for solvers
and other such capabilities, the construction of complex applications is greatly simplified,
and adaptation to different problems or computational environments can be as easy as
swapping one component implementation with another more suitable to the new
situation. This provides a “plug-and-play” environment for the construction of
applications. Many component environments provide a graphical tool for the assembly of
applications, which further simplifies the task of assembling complex applications from
components. In addition to the resultant increase in productivity, CBSE also helps
researchers focus on application aspects of particular interest and simplifies group
software development because components are natural units of work for individuals or
small groups and are largely decoupled from other components once their interfaces are
defined.

CBSE builds on object-oriented programming concepts but does not require the use of
object-oriented languages. It can be viewed as an extension and refinement of the
                                                  
2 Message Passing Interface.  For more details see http://www.mct.anl.gov/mpi .
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common practice of using widely shared software libraries as the basis on which to build
an application, offering significant advantages such as easier integration of multiple
libraries into a single application and the ability to rigorously enforce the published
interfaces for the library. CBSE also has many similarities with the common practice of
developing domain-specific computational frameworks that provide an infrastructure to
build a variety of applications in a given scientific discipline. We emphasize, however,
that CBSE is a more general and flexible approach. One can think of building the
domain-specific infrastructure in the form of components, but in the CBSE approach
those components could be more easily reused in applications outside the domain as well.

CBSE has most strongly benefited software development on the Internet, in distributed
computing, and in business. Several component models are in routine use, such as
Enterprise JavaBeans (EJB; Sun Microsystems), Microsoft’s COM/DCOM (Microsoft
Corp., 1994-2003; Microsoft Corp., 1996-2003), and the Common Object Request
Broker Architecture (CORBA; Object Management Group, 2002). Unfortunately, these
commodity component architectures suffer from various deficiencies that limit their use
in high-performance computing (HPC) contexts. Many component models are designed
for situations in which performance criteria are based on human response times on the
order of a tenth of a second and cannot provide the performance required in HPC
environments, where the relevant time scales are typically measured in nanoseconds. A
second major limitation is that commodity component models are designed for
distributed computing and have no concept of tightly coupled parallelism appropriate for
typical HPC systems. Additional problems concern language support, data types, and
platforms that are important to high-performance scientific computing. These issues have
limited adoption of CBSE in the HPC community. Indeed, frustration with the situation
led to the formation in 1998 of the Common Component Architecture Forum.

2.2 The Common Component Architecture

The Common Component Architecture3 (CCA) is a grass-roots effort to bring the benefits
of component-based software engineering to high-performance scientific computing. The
CCA is specifically designed to preserve the performance of components on the same
processor, to support both tightly coupled parallel and distributed computing, and to
simplify the incorporation of existing code into the CCA environment. The CCA uses the
Babel4 (Dahlgren et al., 2003) language interoperability tool to allow components written
in various languages (currently Fortran, C, C++, and Python) to interoperate, providing
the necessary support for important scientific languages (namely Fortran) and data types.
Recognizing the tremendous investment in software that already exists in the HPC world,
the CCA is also designed to minimize the burden of incorporating existing software into
the component environment.

The primary task of the CCA Forum is to develop the specification for the component
architecture, which defines the rights and responsibilities and the relationships between

                                                  
3 http://www.cca-forum.org
4 http://www.llnl.gov/CASC/components/
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the various elements of the model. Briefly, these are as follows:

ÿ Components are units of software functionality that can be composed together to form
applications. Components encapsulate much of the complexity of the software inside
a black box and expose only well-defined interfaces to other components.

ÿ Ports are interfaces through which components interact. Specifically, CCA ports
provide procedural interfaces that can be thought of as a class or an interface in
object-oriented languages, or a collection of subroutines, or a module in a language
such as Fortran 90. Components may provide ports, meaning they implement the
functionality expressed in the port, or they may use ports, meaning they make calls on
that port provided by another component.

ÿ The framework holds CCA components as they are assembled into applications and
executed. The framework is responsible for connecting uses and provides ports
without exposing the components’ implementation details. It also provides a small set
of standard services, defined by the CCA specification, which are available to all
components.

The CCA specification is also the focus of a research and development effort aimed at
providing software tools supporting the CCA and understanding how best to utilize and
implement CBSE in a high-performance computing environment.

The CCA specification is silent on the issue of programming languages. In many tightly
constrained software development situations, especially those that rely extensively on
legacy code, one can expect that all components of interest will be written in one or a few
languages (i.e., Fortran, or Fortran and C++), and one can implement CCA-compliant
components and frameworks in this context, using specialized point-to-point solutions to
provide the required language interoperability. In order to gain the full benefits of CBSE,
however, it is clearly desirable to be able to connect components regardless of the
language in which they were written.  Therefore, CCA Forum researchers have developed
the Babel language interoperability tool. Babel provides an environment in which all
supported languages are treated as peers. Interfaces are expressed in the Scientific
Interface Definition Language (SIDL), which is then compiled to produce the “glue”
code necessary to call between languages. The performance overhead costs associated
with the Babel-generated glue code have been assessed both by Babel developers and
developers of the Hypre library, and found to be low (Bernholdt et al, 2002; Kohn et al,
2001).  Babel is not a least common denominator solution; it provides an object-oriented
environment even when those features are not native to a supported language. Babel
currently supports Fortran 77, Fortran90/95, C, C++, and Python and can be used outside
the CCA environment as well.

The CCA specification supports both parallel and distributed computing and facilitates
local performance by allowing direct connection of component interfaces. In a direct
connection environment, components on a given processor are loaded into a single
process, so that they share the same address space, but are loaded into separate
namespaces, so that they cannot see each other. In this way, data “owned” by one
component can be passed by reference to another component, alleviating the need to copy
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data and use a remote method invocation protocol. This is a key performance feature that
distinguishes the CCA from commodity component models, which are designed for
distributed computing and do not have a concept of direct connection.

The Ccaffeine framework5 (Allan et al ., 2002), used in this work, is one of several
developed by CCA researchers6 (J. McCorquodale et al ., 2001; Kumfert, 2003),
supporting parallel and distributed computing. Ccaffeine focuses on tightly coupled
parallel computing, in which components in the same processor interact through CCA
mechanisms (calls on ports), while interprocessor communication among parallel
instances of a component are free to use whatever HPC communications layer they
prefer—for example, MPI (MPI Forum, 1994), PVM (Geist et al., 1994), and Global
Arrays.7 This is another performance feature of the CCA: it allows software developers to
use the parallel programming tools they are most familiar and comfortable with, and it
facilitates the incorporation of existing parallel software into the CCA environment.
Different components in an application can use different parallel programming libraries.

Ccaffeine supports both single component, multiple data (SCMD) and multiple
component, multiple data (MCMD) operation, which are analogous to the noncomponent
SPMD and MPMD programming models. In MCMD operation, the processors available
to the job are partitioned and different “programs” (groups of components) run on
different groups of processors. Hence, it is well suited to coupled simulations, such as
climate models including atmospheric, oceanic, land, and other elements, which may
naturally prefer to use different numbers of processors.

Another area of CCA research related to the model coupling idea is MxN parallel data
redistribution (Allan et al., 2002; Damevski, 2003; Bertrand and Bramley, in preparation;
Larson et al., 2001; Keahey et al., 2001). This involves transferring data from a
simulation running on M parallel processes to another running on N processes, where in
general M≠N, so that the data is not simply transferred but must be reorganized into a
new distribution as well. To facilitate model coupling and similar applications, CCA
researchers are exploring generalized data redistribution capabilities, which can be
implemented as components that are explicitly connected to components needing to
transfer data or can be used within the framework to implicitly reorganize method
arguments as part of a parallel remote method invocation capability.

The CCA Forum encourages and facilitates the development and publication of both
“standardized” interfaces and component implementations of those interfaces. Since
interfaces are the means by which components interact, standardization of interfaces
facilitates reuse and interoperability of components implemented separately. This kind of
standardization usually takes place within a scientific domain and need not imply a
formal process. For example, a group of users and developers of solvers or meshing
software might agree on a set of interfaces (typically expressed in SIDL) they will
conform to. With broad participation from members of the CWO community, the Earth
                                                  
5 http://cca-forum.org/ccafe
6 XCAT framework Web site:  http://www.extreme.indiana.edu/xcat/
7 http://www.emslpnl.gov:2080/docs/global/
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System Modeling Framework (ESMF)8 collaboration , described in section 3.2, is
developing a set of standardized interfaces for components Earth system applications.
Once interfaces are agreed on, users and developers can adapt their existing software to
the new interfaces. If multiple implementations of an interface are available, any of them
can be used to satisfy a component’s “uses” port for that interface, and one
implementation can be swapped for another in a simple plug-and-play fashion.  With the
encouragement and support of the CCA team, many groups are developing components,
often encapsulating popular libraries that will be available for use by others. Our long-
term goal is to have a rich “marketplace” of CCA components, allowing many
applications to be assembled from a combination of off-the-shelf components, combined
with a few specially developed components representing the researcher’s particular
interests or methods.

3 Collaborations between CCA and the CWO Community

In this section we describe two major community efforts to modernize and improve the
performance of the software used in CWO applications, namely the DOE Climate
Change Prediction Program and the NASA-funded interagency Earth System Modeling
Framework project, and the CCA outreach to both of these projects.

3.1 DOE Climate Change Prediction Program

The Department of Energy’s Climate Change Prediction Program (CCPP) is funded
under the DOE Scientific Discovery through Advanced Computing Program (SciDAC)
initiative. One major initiative under CCPP is an interagency collaboration with NSF’s
National Center for Atmospheric Research (NCAR) to improve the performance,
software quality, and scientific content of the Community Climate System Model9

(CCSM).

CCSM is a coupled climate model, comprising several mutually interacting component
models—atmosphere, ocean, sea ice, land-surface, river routing, and a flux coupler. The
flux coupler provides the following services to the coupled model: intermodel state and
flux data transfer, interpolation between model grids, calculation of fluxes and other
diagnostic quantities, time averaging and accumulation of flux and state data, merging of
flux and state data from multiple model sources for use by another model, and overall
coordination of the coupled model’s execution. Our collaboration with CCSM is focused
on two areas.  We are prototyping use of CCA at the system integration level, the model
subcomponent level, and the algorithmic level. We are also exploring the use of CCA to
package portions of the Model Coupling Toolkit—the foundation code on which
CCSM’s flux coupler is built—as CCA components.  Since CCSM plans to adopt the
standard interfaces being developed by the ESMF project (see section 3.2), the CCPP
work is being performed in collaboration with the ESMF group.

                                                  
8 http://www.esmf.ucar.edu
9 http://www.ccsm.ucar.edu
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3.1.1 Model Coupling Toolkit

The current CCSM flux coupler was implemented by using the Model Coupling Toolkit10

(MCT). MCT  (Larson et al., 2001; Ong et al., 2002) is a software package for
constructing parallel couplings between MPI-based distributed-memory parallel
applications. MCT provides the following often-used objects and services needed to
construct distributed-memory parallel coupled models:

ÿ A lightweight component model registry;
ÿ A multifield data storage object;
ÿ Domain decomposition descriptors, communications schedulers for intercomponent

parallel data transfer and intracomponent parallel data redistribution, and the facilities
to implement intercomponent handshaking;

ÿ A class encapsulating distributed sparse matrix elements and communication
schedulers used in performing interpolation as parallel sparse matrix-vector
multiplication;

ÿ A data object for describing physical grids capable of supporting grids of arbitrary
dimension and unstructured grids that also support masking of grid elements;

ÿ Spatial integral and averaging facilities that include paired integrals and averages for
use in conservation of global flux integrals in intergrid interpolation;

ÿ Registers for time averaging and accumulation of field data; and
ÿ A facility for merging of state and flux data from multiple sources for use by a

particular model

MCT supports both sequential and concurrent couplings and can support multiple
executable images if the implementation of mpirun used supports this feature. MCT is
implemented in Fortran90, and its programming model is scientific-programmer-friendly,
based on F90 module use to declare MCT-type variables and invocation of MCT routines
to create couplings.

The first major focus of the MCT-CCA collaboration has been the creation of a migration
path between MCT-based coupling and a CCA-compliant component-based approach
(Larson et al., 2003).  This is being accomplished by using MCT to create an
implementation of the ESMF standard component-level interfaces (another
implementation of the ESMF interfaces is being developed at NCAR).  The ESMF data
types and programming model, described in more detail in section 3.2, offer a bridge
between the lower level functionality provided by MCT and the generic component
interfaces provided by CCA.  The ESMF_State type encapsulates the data associated
with a model’s state, specifically the field data, the physical grid on which they reside,
and the data’s domain decomposition. The ESMF_GridComp type encapsulates all of a
model’s input and output states (each of which is associated with and individual
ESMF_State instance) and other useful information needed for coupling the model to
the outside world.  The ESMF_CplComp  type is used to connect an output
ESMF_State from a source model to an input ESMF_State of another model.  The

                                                  
10 http://www.mcs.anl.gov/mct
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basic unit of software to be cast as a component is any CCSM component model that is
currently coupled using MCT. Each component is implemented by using the Fortran
derived type ESMF_GridComp, which sets the standard for the component’s coupling
interfaces. In this approach, component composition can be accomplished by using the
following methods: composition and static linkage using Fortran, construction of C++
wrappers and composition using Ccaffeine—the so-called “CCA Classic” approach, and
description of component interfaces using SIDL and Babel and composition using a
CCA-compliant framework. Currently, this component approach supports SCMD
component scheduling and coupling only, but it will soon be expanded to support MCMD
coupling as well.

We have begun the task of describing ESMF-compliant MCT interfaces using SIDL. The
first and obvious motivating factor is the goal of repackaging MCT as a collection of
CCA-compliant components. Prospective MCT-based components include distributed
multi-field data storage, parallel sparse matrix-vector interpolation, global integrals, and
averages.  We present in Section 3.1.3 an example of how these components might be
applied.  Another application of the SIDL interface description is the extension of MCT’s
programming model to languages other than Fortran90. This is an example of how the
Babel interlanguage interoperability tool can be used in a context outside of CCA.

3.1.2 CCSM System Integration

At the system integration level, we are prototyping the use of CCA to cast the CCSM’s
component models as CCA-compliant components. We have developed skeleton
components for the atmosphere, ocean, sea ice, land surface, river routing, and flux
coupler. These components can then be instantiated and connected by using the Ccaffeine
GUI (Figure 1); their subsequent execution is similar to the ESMF-CCA prototype
described in Section 3.2.2. These skeleton components are being expanded to have the
capabilities of the CCSM “data” models that are used to perform system integration tests
on the CCSM coupler. The components will then entail sufficient computational
complexity that we can begin to assess in the coupling context any performance costs
associated with CCA components versus the current coupler.

3.1.3 Community Atmosphere Model

An example of a CCA application targeted at the model subcomponent level is the
refactoring of CCSM’s atmosphere—the Community Atmosphere Model11 (CAM). CAM
has been refactored to disentangle its dynamical core from its subgridscale physics
parameterizations. This split allowed a proliferation of dynamical cores, and CAM
currently has three: a pseudo-spectral method, the Rasch-Williamson semi-Lagrangian
method, and the finite-volume Lin-Rood scheme. Standardization of the interfaces to
these dynamical cores and the overall subgridscale physics package is under way. Once
complete, these software modules can be packaged as CCA components.  This will allow
one to use CCA to compose and invoke a stand-alone version of CAM in which the user

                                                  
11 http://www.ccsm.ucar.edu/models/atm-cam/
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may plug in the dynamical core of choice. Furthermore, the developer of a new
dynamical core will need only code it to the interface standard, and it will be easily
integrated into the model for validation.

Figure 1.  Prototype of CCA component-based system integration of the CCSM.

3.1.4 River Transport Model

The river transport model (RTM) in the CCSM version 2 computes river flow on a 0.5o

latitude-longitude grid and uses no parallelism in its calculations. Future science goals for
the RTM include support for significantly higher-resolution (up to 100x the number of
catchments) and catchment-based unstructured grids, support for transport of dissolved
chemical tracers, and inclusion of the effects of water storage in the form of reservoirs.
At the current resolution, the lack of parallelism in the RTM calculation does not retard
the overall execution of CCSM, but the process of coupling to the RTM, which requires
gathering (scattering) data to (from) a single processor when sending (receiving) data to
(from) the RTM, does impose a bottleneck. This coupling communications cost exceeds
the computation cost of the RTM.

                                                  
12 http://www.ccsm.ucar.edu/models/atm-cam/
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To incorporate distributed-memory parallelism in the RTM and meet its science goals,
we are developing a completely new implementation of the RTM using MCT. In this
approach, we view the problem of river transport as a directed graph with the nodes
representing catchments and the directed edges representing the dominant inter-
catchment flow paths. The river transport calculation is then implemented as a parallel
sparse matrix-vector multiply, and the load balance for this operation can be computed by
using graph partitioning.  Mass conservation is ensured through the calculation of global
mass integrals before and after the matrix-vector multiply. This problem is easily solved
using MCT. The ESMF-compliant MCT multifield data storage object is used to store
runoff and tracer concentration data; MCT’s domain decomposition descriptors are used
to describe the load balance; MCT’s parallel sparse matrix-vector multiply is used to
perform the water and chemical tracer transport; and MCT’s paired global spatial integral
facility is used to carry out the mass balance and mass conservation calculations.

The component-based approach used for key MCT capabilities makes the path to a
component-based RTM clear. Four MCT-based components will be used to implement
the RTM: a distributed multifield array used to store water and chemical tracer
concentrations; a parallel sparse-matrix vector multiply, which will be used to compute
water and chemical tracer transport; a component describing the physical grid (i.e., the
locations and sizes of the catchments); and a paired spatial integral component, which
will be used to enforce mass conservation.

3.2 The Earth System Modeling Framework

The Earth System Modeling Framework (ESMF) is a national effort to develop common
software utilities (“ESMF infrastructure”) and coupling services (“ESMF superstructure”)
in the climate, weather, and data assimilation domains.  The objectives of the ESMF are
to facilitate:

ÿ an extensible, hierarchical achitecture for structuring complex CWO models;
ÿ interoperability of modeling components among major centers;
ÿ lower cost of entry into Earth system modeling for university and smaller groups;
ÿ sharing of common software utilities and services.

Advances in Earth system simulation and prediction require the incorporation and
evaluation of new physical processes such as biogeochemistry and atmospheric
chemistry, which can be represented as independent software components.
Standardization of interfaces for new and existing components in CWO applications via
ESMF and CCA creates a clear path for researchers throughout the community to
develop software that can be utilized in multiple applications and contexts. It also allows
researchers to draw from a broad spectrum of available components when developing
new applications.  The functionality and collaborative potential that the ESMF represents
are needed to meet forthcoming scientific challenges.
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The 15 application testbeds for the ESMF include the CCSM mentioned in the previous
section of this paper, the Weather Research and Forecast14 (WRF) model, models from
the NOAA Geophysical Fluid Dynamics Laboratory, the National Centers for
Environmental Prediction, MIT, and the NASA Global Modeling and Assimilation
Office.  Each of these applications either is a multi-component, coupled modeling system
or has the potential to be used in such a modeling system.  As collaborators on the ESMF
project, these groups will use a standard  ESMF_GridComp data type to represent their
atmosphere, ocean, land, sea-ice and data assimilation components, and an
ESMF_CplComp coupler data type, built on underlying toolkits for regridding and
communication, to connect gridded components into applications.

Like CCA, the ESMF provides a generic component abstraction that connects user code
components to the framework through a SetServices() method.  Unlike CCA,
ESMF customizes methods and data structures for Earth system models, and provides
utilities and services specific to the CWO domain.   For example, the data exchanged
between ESMF components is packed into a data structure called an ESMF_State,
which is a container for data types that represent geophysical fields.  Since ESMF
applications typically perform a setup, timestep through numerical solution of PDEs, and
then shut down, ESMF codes are required to have Initialize(), Run(), and
Finalize() methods.

The ESMF and CCA groups have worked closely together to ensure interoperability
between the ESMF and CCA frameworks; i.e., to guarantee that ESMF components may
be used within CCA, and that ESMF will be able to utilize the wide variety of CCA-
compliant components that exist or are under development.  An ESMF-CCA prototype,
described in more detail in the next section, has been developed that uses the component
registration methodology and GUI from CCA. ESMF components do not need to be
modified, but can simply be wrapped to become CCA-compatible.  The prototype
demonstrates that interoperability between CCA and the ESMF is entirely plausible and
in fact not that onerous, since it is facilitated by the similar architectural principles that
underlie both frameworks.  The capacity for interoperability between these frameworks is
exciting, since it opens the possibilities of bringing many Earth system modeling
components into the CCA arena, and making CCA tools and services available to a host
of Earth system applications.

3.2.1 ESMF-CCA Interoperability

Several notable distinctions exist between CCA and the ESMF component frameworks.
The primary distinction is that the CCA provides a general component model, while the
ESMF provides a specialized component model tailored to a specific application domain
(CWO applications). Moreover, the CCA enables dynamic composition of component-
based applications at run time, while the ESMF dictates static linkage of a component
hierarchy. The CCA does not provide concrete classes with which to build components,
while the ESMF does (the ESMF infrastructure). In this sense, the CCA is component

                                                  
14 http://wrf-model.org
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framework, while the ESMF is an application framework.

These differences suggest the intriguing possibility of using the CCA component model
and the ESMF application framework together to build CWO applications. This would
bring the dynamism of the CCA component model to CWO developers. It would also
enable coupling to CCA components from within the ESMF framework, allowing ESMF
components to step outside of bounds of the ESMF_Initialize(), ESMF_Run(),
ESMF_Finalize() paradigm if a richer component interface is required.  Furthermore, the
union of these two frameworks would provide the CCA community with access to ESMF
components.

The key question is:  How do we build a bridge linking the two component models?
Fortunately, the ESMF framework provides hooks to easily accomplish this task. ESMF
components must provide a special function to register their interface functions with the
ESMF framework. Thus, a CCA component (masquerading as an ESMF component)
need only provide this special function as one of its CCA ports.

The joint ESMF-CCA component architecture is fairly straightforward. ESMF
components are wrapped with a thin layer of C++ code to provide the CCA component
veneer. This wrapper allows an ESMF-CCA application to be composed by selecting
from a palette of ESMF-CCA components, using the Ccaffeine CCA framework. A
special version of the ESMF component registration function is provided for all ESMF-
CCA components, to allow them to register their ESMF interface functions (initialize,
run, finalize). Once all components are created and connected, the CCA framework
passes control flow over to the ESMF framework.

A major advantage of this dynamic approach is that components can be easily substituted
for one another without modifying user code (as long as the swapped components
conform to the same interface).  As it now stands, one must modify the ESMF
superstructure to replace a component, as the complete component hierarchy is coded
into an ESMF application.

We recognize that climate and weather models do not typically require run-time
swapping of geophysical components, since it takes on the order of months to tune and
validate these applications, and months to run long climate simulations.  However, run-
time swapping may be useful for communication and IO components.

3.2.2 ESMF Prototype Based on CCA

A key difference between the CCA component environment and the ESMF component
environment is ESMF’s requirement for the user to supply additional standard methods
(beyond those required for registering the component in the framework).  Our ESMF-
CCA Prototype uses CCA’s Uses-Provides design pattern to couple components. In
addition to having an interface method for component registration, the ESMF-CCA
components also have methods similar to ESMF standard component Initialize(), Run(),
and Finalize() methods. The data exchange between ESMF-CCA components is through
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a standardized, self-describing data type similar to the ESMF_State. We are working on a
C++ version of the ESMF component interface so that ESMF components can be used
with CCA in a very straightforward way (Zhou et al, 2003). In the following, we
illustrate the ESMF-CCA prototype through a typical sequential coupling between an
atmosphere model and an ocean model. At the beginning of a simulation, five
components are created: a driver (Climate), the atmosphere (Atm), the ocean (Ocn), a
coupler from atmosphere to ocean (CplAtmXOcn), and a coupler from ocean to
atmosphere (CpleOcnXAtm). In the ESMF-CCA prototype, we use the CCA
setServices() utility to register these five components. In addition, data exchange is
implemented through import or export states similar to the ESMF_State datatype. The
component execution sequence of events is as follows: (1) The atmosphere component
provides  its data at its boundary, exportAtm, to the coupler, CplAtmXOcn. (2)
CpleAtmXOcn uses exportAtm, transforms it into importOcn with interpolation routines,
and then provides importOcn to the ocean component. (3) With importOcn, the ocean
component runs its solver for the evolution equations and then provides its data at the
boundary, exportOcn, to the coupler, CplOcnXAtm. (4) The coupler, CpleOcnXAtm,
uses exportOcn, transforms it into importAtm, and provides importAtm to the atmosphere
component. (5) The atmosphere component uses importAtm, runs its solver for evolution
equations, and then provides its data at the boundary, exportAtm, to the coupler,
CpleAtmXOcn. The coupling sequence can be well represented in a screenshot of the
Ccaffeine GUI used in the simulation (Figure 2).

Data flow

Port link

Figure 2.  CCA wiring diagram showing component relationship in a simulation of
coupled atmosphere and ocean model components.
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3.3 UCLA Coupled Climate Model and Distributed Data Broker

An ongoing project at JPL consists of a demonstration of CCA with three specific climate
components: the UCLA Atmospheric General Circulation Model (AGCM; Wehner et al.,
1995), the LANL POP Ocean General Circulation Model (OGCM; Smith et al., 1992),
and the UC Berkeley/UCLA Distributed Data Broker (DDB; Drummond et al., 2001).
We will not discuss the AGCM or OGCM in this paper; they have been discussed
elsewhere and are fairly well known to the climate community. Since the DDB is not as
well known, however, we include here a short description.

The DDB is used in two phases. First, components that will use it to exchange data
register with it by signing up to produce or to consume data. In this phase, they also
describe the global view of the data they have or want, as well as the mapping of this data
onto the processors. The DDB then calculates what messages will have to be sent to
transfer data from one component that is producing it to another component that is
consuming it. This calculation is done on a single processor at the end of this first phase,
but the information about the messages themselves is stored on the processors that will be
sending or receiving them. This is why the DDB is called distributed. In the second
phase, the actual messages are sent when the components on a given processor signal that
they have produced or are ready to consume data.  Also, any needed interpolation is done
by the DDB, if the grids are not coincident or if no data exists at some number of points.

The CCA version of this application is expected to be fairly straightforward. We note that
since the work is being done with the Ccaffeine framework (Allan et al., 2002), which
does not currently have the ability to instantiate one component on a subset of processors
(AGCM), another on the remaining processors (OGCM), and a third on all the processors
(DDB), we use a version of the coupled application where the OGCM has been turned
into a library that is called from the AGCM driver code on a subset of the AGCM nodes.
Hence, from the viewpoint of Ccaffeine, the AGCM is a driver component (having only a
go port and multiple uses ports), and the DDB is a server component (having only
provides ports.) Additionally, we think that the DDB component will be useful in other
applications, both in climate and other fields.

4 Conclusions and Future Work

We have described in detail the Scylla of software complexity and Charybdis of
performance degradation that faces the CWO scientist/programmer. We have described
in detail how industrial software engineers have created the CBSE paradigm to tame
software complexity in their applications.  We described how commercial CBSE
solutions have human reaction time as their typical intercomponent latency and how this
timescale is inadequate to the support high-performance computing applications endemic
to computational science and engineering, and in particular the CWO community. We
have described a component approach that has as its chief goal imposing low overhead in
order to support scientific simulation—the Common Component Architecture.  We
presented in detail CCA’s outreach to the CWO community, and the early promising
results of this collaboration.
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The work presented in this paper varies in maturity from conceptual design to prototype
to working CCA-based application.  We feel the current work represents a bridgehead
into the CWO community that can be expanded substantially by demonstrating how
CCA’s component approach will position CWO applications better to utilize the wide
variety of scientific computing components presently under development.  We believe
components of particular interest are:  ODE system solvers for use in atmospheric
chemistry and global biogeochemistry; spatial mesh generators and PDE solvers for
three-dimensional fluid flow for use in atmosphere, ocean, and sea ice dynamical cores;
and parallel i/o components.  We recognize that many of these components represent
leading edge technology, and that this may be hard to integrate in operational forecast
systems that represent trailing edge technology15, and the process of adoption by the
CWO community may proceed slowly.  We believe that the benefits afforded by CCA
will cause this pace to accelerate as time progresses.
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