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1. INTRODUCTION

The inform ation processing system of the

W eather Surveillance Radar 1988 (Doppler) (W SR-

88D) incorporates a number of automated

algorithms for interpreting ref lectivity and velocity

data in terms of the threat of severe weather.  These

include the Severe W eather Potentia l (SW P) product

(Kitzm iller et al. 1995), which is a numerical index

proportional to the probability of large hail, damaging

convective wind gusts, and/or tornadoes.  The SW P

is based solely on volumetric radar reflectivity

information.  As W SR-88D information was

integrated with other data streams in the Advanced

W eather Interactive Processing System (AW IPS), it

became possible to refine the radar-only algorithms

through the addition of information on the near-storm

environm ent, such as static stability and upper-level

winds (Kitzmiller and Breidenbach, 1993).   Versions

of this ref ined algorithm, referred to here as the

Severe W eather Threat Index (SW TI), have been

incorporated with the AWIPS System for Convective

Analysis and Nowcasting (SCAN, Smith et al. 1998).

Both SW P and SW TI were developed

through statistical regression, by correlating a

combination of radar-observed and environmental

indices to severe storm occurrence. The

development sample was rather limited, including

data from ~7000 storms (both severe and

nonsevere) observed during the 1980’s and early

1990’s.  Much of the radar data was collected from

12 earlier-generation NW S conventional radars that

were specially adapted for autom atic volumetric

scanning and digital reflectivity processing.

The goals of the current study are to obtain

a general algorithm that (1) is based on a much

larger data sam ple collected from most radars within

the conterminous U.S., (2) incorporates still more

candidate predictors, including some derived from

Doppler velocity information, and (3) utilizes

statistical prediction methods other than LR, if such

methods prove to be superior.  In particular, we have

tested artificia l neural networks (NN) as an

alternative to LR.  W e were motivated by previous

findings that many candidate predictors had a highly

nonlinear relationship to severe weather relative

frequency, and by a desire to incorporate some

categorica l pred ic tors  (e .g. , mesocyc lone

indications) that might not be adequately handled by

linear correlation.  Though it is possible to adapt

l inear predictor combinations for nonlinear

p r e d ic t a n d r e s p o n s e  (see  fo r e x a m p le

Charba 1979), most available methods are

subjective and time-consum ing. 

2.  DEVELOPMENT DATA

2.1. Radar data

The radar data were taken from the

W SR-88D network within the conterminous United

States (CONUS) during the period April-July, 2000-

2001. This corresponds to the spring-early summer

peak in severe weather activ ity.  Radar umbrellas

containing thunderstorm events were identified

through automated monitoring of a national radar

reflectivity mosaic, and detailed radar information

for sites of interest was obtained from a centralized

data server.  This information included gridded

vertically-integrated liquid (VIL), cell-based (storm

updraft) VIL, 30-dBZ storm top height, maximum

reflectiv ity, and mesocyclone and tornado vortex

signature (TVS) indications.  All radar-based



predictors were objectively interpolated to a 4 km

square horizontal grid extending to a radius of 230

km from the radar. Fo llowing the initial W SR-88D

SW P convention, an individual storm cell was

defined as a square region 28 km on a side (7 X 7

grid boxes) centered on a local maximum in the VIL

field. This size approximates the upper limit of the

average spatia l scale for individual thunderstorm

cells (10 to 30 km ) as defined Byers and Braham

(1949). The probability of severe weather is very low

for cells with VIL less than 10 kg m -2 (Kitzmiller et al.,

1995), and therefore only cells having at least two

grid boxes with VIL of 10 kg m -2 or more were

considered for inclusion in the dataset. For cells that

are far from radar site (>=200km) the VIL could be

overestimated, so we considered only those cells

that were within 90 nautical miles (~167km ).

All storm cells meeting the above criteria

were initially included. To insure some measure of

statistical independence and eliminate repeated

sampling of individual cells, the initial sample was

culled so that any two cells in the final dataset were

separated from each other by at least 40 km in

space, and/or 30 minutes in tim e.  As explained

below, these cells were defined as nonsevere or

severe based on their proximity to severe local storm

reports.

2.2 Upper-air data from numerical models

Another type of predictors (known as

environmental predictors) was collected from

numerical weather prediction (NW P) model

products. The environment predictors were derived

from analyses and 6-h or 12-h forecasts of the

National Centers for Environmental Prediction

(NCEP) Eta model, as archived  by the

Meteorological Development Laboratory. The Eta

m o d e l  i s  r u n  f o u r  t i m e s  p e r  d a y

(0000,0600,1200,1800 UTC).  To objectively assign

environmental variables to individual storm cells, the

available ETA m odel’s initial-time analyses and 6-h

or 12-h forecasts at 0000 and 1200 UTC were

projected to the most close storm cell valid times.

For instance, for cell times between 0000 and 02000

UTC, the model data of 12-h forecast initialized at

1200 UTC were applied; for cell times between 0300

and 0400 UTC, the initial-time analyses at 0000 UTC

were used; And for cell times between 0500 and

0900 UTC, the 6-h forecast initial at 0000 UTC were

used, etc.

2.3  Severe local storm reports

Predictand data come from the reports of

severe local storms related to tornadoes, surface

wind gusts causing damage or $ 25 m s-1, and/or

large hail ($ 2cm diameter). These severe weather

reports are routinely collected from various sources

by NW S W eather Forecast Offices and later

processed by the Office of Climate, W ater, and

W eather Services. These events were assigned to

a cell if they occurred within 24km of the cell centroid

and were collected from 10 m in before to 30 min

after the nominal radar observation time. This

convention should account for both events in

progress and those about to develop. Then the

number of associated severe weather reports were

summ ed up and recorded.

To create the predictor-predictand dataset

needed in our algorithm development, it was

necessary to keep the sampling procedure

statistically reliable.  W e wished to insure that there

was a reasonable chance that severe storms were

observed as such. A reporting bias toward populated

areas is well known (Smith 1999). Therefore only

cells passing through populated areas that had

yielded multiple reports over the period 1973-1999

were considered in the fina l statistical dataset. This

procedure yielded a data sam ple of 115,594 storm

cells, of which 4.4% were judged to be severe.

3. CAN DID AT E SEVERE  W E A T H ER

PREDICTORS

A total of 27 predictors, including both radar-

based and NW P-based indices, were selected for

the SW TI development. The set of predictors

included some of VIL-based indices used in the

development of the original SWP and SWTI

algorithms, additional reflectivity-based predictors

yielding information on maximum  reflectivity and

vertical extent, and Doppler-based predictors.

Storm-environment predictors include a number of

comm only-used stability indices, as well as others

found to be useful in predicting conditional severe

storm probability in Model Output Statistics

applications (Reap and Foster 1979, Charba 1978).

These predictors are among those most strongly

correlated with severe weather events within a

population of severe and nonsevere thunderstorm

cases.  A complete list appears in the Table.

The Doppler velocity predictors MESO and

TVS indicate mesoscale or m icroscale ro tation within

a convective cell, respectively (Robert and W hite,

1998, Mitchell 1995).  For MESO, possible

indications are None, UNCO (for horizontal veloc ity

shear with no detectable vertical extent), 3DCO (for

horizontal shear with lim ited vertical extent), and

MESO, the last state indicating a m esocyclone with

significant vertical extent.  The TVS indications

ETVS and TVS represent intense horizontal shear



aloft and near the surface, respectively (TVS values

other than None are rare).

The VIL indicators GVIL and CVIL are

estimates of the mass of water per un it area within a

vertical colum n (for gridded VIL, GVIL), and with in

the storm updraft column as approximated by the

maximum reflectivity at each vertical level (cell-

based VIL, CVIL).  This mass is estimated from

reflectivity through the Marshall-Palmer Z-M

relationship.  The horizontal area predictors SVG10,

SVG20, and SVG30 are simply the number of 4-km

grid boxes within the 7x7 box cell region that have

GVIL  $10, $ 20, and $ 30 kg m -2 (Kitzm iller et al.

1995).

Most of the listed storm environment

predictors are well-known or self explanatory.  The

thermal advection indices are based on the wind

speed, direction, and vector change with in a vertical

layer of the atmosphere (Kitzmiller and McG overn

1990).  The thermal advection is positive for wind

vectors veering (turning clockwise with height) from

the bottom to the top of the indicated layer.  The

“best” lifted index is the one indicating the greatest

instab ility from any parcel within the lowest 4 layers

of the Eta model vertical domain.

These predictors were then used as

candidate predictors for the developm ent of a

forward-selection m ultip le linea r screening

regression equation, referred to henceforth LR

(Draper and Sm ith 1985), and as the input nodes in

a back-propagation (BP) neural network (NN)

algorithm. The severe weather statistical predictand

was taken to be 0 for a nonsevere cell and 1 for a

severe cell.

4.  THE PREDICTION ALGORITHMS

The dataset was separated into two subsets

(known as dependent and independent dataset) in a

random ly mixed order. The dependent subset

contains 86,678 cases, which were used for

algorithm development through NN and LR

approaches. Both neural network and regression

equation were used to relate severe storm

occurrence (the predictand) to radar and

environmental indices (the predictors). The

independent subset contains 28,916 cases, which

was applied later for verifying the performances of

these two algorithms.

Neural network (NN) techniques have been

widely used in many meteorological forecasting

problems, such as tornadoes (Marzban and Stum pf,

1996), damaging winds (Marzban and Stumpf,

1998), thunderstorms (McCann, 1992) and

quantitative prec ipitation forecast (Kuligowski and

Barros, 1998; Feng and Kitzmiller, 2002). In th is

experimental work, a three-layer BP neural network

was constructed so as to describe the nonlinear

statistical relationship that might exist between one-

dimension predictand space and multiple-dimension

predictor space. As note in the work c ited above, th is

nonlinear effect seemed significant in severe

weather nowcasting.  Though it is possible to adapt

predictors for nonlinear relationships to the

predictand, and for nonlinear interactions among

predictors (Breidenbach et al.  1995), this  approach

is partly subjective and can be time-consuming.

The BP has been the most commonly used

network architecture in many meteorological

problems and its detailed network structure is

documented in many references (Bishop, 1995; Hall

et al., 1999; Feng and Kitzmiller 2002). The

configuration of the BP network used here includes

an input layer with 27 input nodes, 1 hidden layer

with 10 nodes, and a single output node that

produces severe weather potential or threat index in

terms of probabilities. The 27 input nodes are all

predictor variables discussed in section 3,

normalized to the range 0.01-0.99 (instead of 0-1,

which can produce singularity problems in

computation). The number of output nodes (the

predictand) is generally determined by the prediction

problem itself, which aims at producing probabilistic

forecasts of the severe weather. The number of

nodes in the hidden layer is usually determined by

trial and error.  W e chose to use 10 based on the

number of input nodes and earlier experimentation

(Aviolat et al., 1998; Feng and Kitzmiller 2002).

The set of values in the successive layer H

were determined from  the values in the previous

layer X by:

HT=F(W .XT+QT) (1)

where W  is a weight matrix logically relates two

adjacent layers, Q is a vector containing activation

threshold values, F is a sigmoid function, which

nonlinearly projects a linear combination of nodes to

each node in the follow-up layer, and the superscript

T denotes the transpose of a m atrix.  The NN

methodology involved a training process to obtain

knowledge from the training data set by determining

the network’s values in two weight matrices and two

activation threshold vectors. This process was done

by designing a gradient descent logic and applying

the sample data for the purpose of gaining a

minimum error between the network output

(probability) and severe weather observed (1 for

severe and 0 for nonsevere).

For com parison, the same 27 candidate

predictors were applied to a linear screening

regression process to obtain a linear expression of



severe weather probabilities. The method used to

develop a linear regression probabilistic equation of

severe weather was similar to that employed in the

development of the previous SW P algorithms.  The

selection procedure yielded the following algebraic

relationships between the available predictors and

event probability:

SW TI = -15.514 + 2.681 SVG30 + 0.303 SVG10 +

0.109 GVIL + 0.153 MAXREFHGT +  0.281 TT +

0.141 W SPD500 + 2.248 MESO - 

0.002 FRZLVL.  (2)

Here, the predictors and their un its are as shown in

the Table.  The categorical MESO variable was

numerically encoded as 0 for None and as 1 for

UNCO, 3DCO, or MESO.  This expression explained

15.7% of the predictand variance.  The predictors

based on gridded VIL had the highest linear

correlation to severe storm  relative frequency.  The

presence of storm rotation as indicated by a nonzero

MESO is often an indicator of high winds or hail as

well as tornadoes, which are less comm on than the

other severe storm phenomena.  Finally, storms are

more likely to be severe in situations with relatively

high static instability, strong mid-tropospheric winds,

and generally cold conditions, as indicated by the

selection of Total Totals index, 500-hPa wind speed,

and freezing level.

A sample severe weather probability

analysis is shown in Fig. 1, where probabilities in per

cent are plotted next to storm cells within a VIL

analysis.  The probabilities are based on (2).  An

alternative presentation consists of text entries in a

cell lookup table.

5.  RESULTS

The output of each algorithm  is probability or

potential of severe weather occurrence for an

individual cell. To test the reliability of the algorithms,

evaluations were made with both the LR and NN

algorithm on an independent data sample. The

Plains (central United States area) AWIPS SW P

algorithm was also evaluated within the same data

sample.  The observations of severe weather were

verified over each 10% probability interval to see

how closely the average forecasted probability

approximated the actual event relative frequency. In

Fig. 2, the observed relative frequency is plotted as

a function of the mean forecasted probability. The

dotted line represents perfect reliability.  Overall, the

LR and AW IPS algorithms show som e departures

from reliability in the probability range 20-40%. The

NN curve is closer to the reliability criterion for most

probability ranges.  All of the algorithm s tend to

depart from perfect reliability and probabilities above

80%, which are rarely forecasted.

Though SW P algo rithm s p rovide

probabilistic guidance, their performance is most

easily evaluated by exam ining categorical

(severe/nonsevere) forecasts based on the

probabilities. Categorical forecasts are generally

derived by setting some fixed threshold probability

values, and forecasting all storm cells with

probabilities at or above the threshold to be severe.

The performance of these forecasts may be

described by three commonly-used measures, the

probability of detection (POD), false alarm  ratio

(FAR), and critical success index (CSI) (Donaldson

et al., 1975; Schaefer, 1990). Let x be the number of

severe events correctly forecasted to be severe, y

the number of severe events incorrectly forecasted

to be nonsevere, and z the number of nonsevere

events incorrectly forecasted to be severe. Then the

scores are defined by:

POD = x / (x + y) (3)

FAR = z / (x + z) (4)

CSI = x / (x + y + z) (5)

The performance of the neural network and

multip le regression algorithm s in terms of POD and

CSI are shown in Fig. 3. These scores were from a

sample of cases outside the development dataset.

For both NN and LR algorithms, the CSI curve

reaches a peak value between 16-32%. Note that,

for probability thresholds within this range, the POD

and CSI of the NN were higher than those of LR.

These results may confirm our previous expectation

that a non-linear approach like NN should be better

than a linear approach for the severe weather

nowcast problem. For probability thresholds less

than 10%, the score differences were smaller.

As has been shown, the yes/no forecast sk ill

is highly dependent on probability threshold. If the

threshold SW P value is set very high, not enough

severe storms would be detected, while if the

threshold is set too low, too many false alarms would

be issued. The optimum  choice may be setting the

threshold as close as possible to the peak CSI value

while achieving an acceptable POD.  For example,

when using 16%  as threshold probability, about 50%

of the severe cells were detected (POD = 0.50); 70%

of the "yes" forecasts were false alarms (FAR = 0.70,

not shown).  The CSI at the 16% threshold was 0.23.

Another way to evaluate the relative

performance of the algorithms is to plot the FAR

curves with respect to POD.  We determined the

false alarm ratio that would be issued by both NN,

LR, and AW IPS SW P in the process of achieving the

same POD value. As shown in Fig. 4, the NN and LR



algorithms consistently yielded fewer false alarms

than did the SWP algorithm. For yes/no probability

thresholds yielding lower probabilities of detection

(where there are fewer false alarms in general) the

NN gave fewer false alarms than did the LR.

6.  SUMMARY AND CONCLUSIONS

Two kinds of statistical severe weather

potential algorithms were used in this experimental

work: the neural network approach and the multip le

linear regression approach. The algorithms utilize

W SR-88D Doppler Radar data and numerical

weather prediction model outputs to provide

probabilities of severe weather centered on a

convective storm cell, 44 km on a side, 30 min after

radar observation.

Although both techniques do not possess

high absolute accuracy in identifying severe storms,

that is, they do appear to improve on the operational

AW IPS SWP algorithm, which was developed from

a much sm aller sample of observational data.

Validation of the NN and LR algorithms on

independent data showed that NN approach, with  its

nonlinear and collective expression of all the

candidate predictors, provided higher forecast

scores and greater statistical reliability.  Given that

the NN approach is only minimally more complicated

to implement than the LR, it seems that NN is a good

candidate for operational use.
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Table.  Candidate predictors of severe local storms.

Abbreviation   Description

Radar-based predictors:

TVS                 Tornado vortex signature (NONE, TVS or ETVS, reduced to 0/1)

MESO               Mesocyclone feature  (NONE, UNCO, 3DCO, or MESO, reduced to 0/1)

CVIL                Cell’s updraft-integrated liquid, kg m -2 (Cell-based VIL)

REFLECTIVITY Maximum equivalent reflectivity (dBZ)

MAXREFHGT     Height of maximum reflectivity (kft MSL)

STOP                Echo top with reflectivity of 30 dBZ or higher, kft MSL

GVIL                Maximum vertically integrated liquid VIL, kg m -2 (Gridded VIL)

SVG10              Number of cell grid boxes with VIL $ 10 kg m -2

SVG20              Number of cell grid boxes with VIL $ 20 kg m -2

SVG30              Number of cell grid boxes with VIL $ 30 kg m -2

Storm environment predictors from Eta model:

W SPD85           W ind speed at 850mb, m s-1

W SPD70           W ind speed at 700 mb

W SPD50           W ind speed at 500 mb

W SPD30           W ind speed at 300 mb

TOTALS            Total totals index ( T 850 + TD850 - 2T500), ° C

TADV850-500 Therm al advection between 850 and 500 mb, s -1

TADV950-700    Thermal advection between 950 and 700 mb

LPRATE7-5  Lapse rate between 700 and 500mb, °C km -1

MEAN RH         Surface to 500m b mean relative hum idity, %

FRZLVL            Freezing level height, m MSL

CAPE               Convective available potential energy (J m -2

BESTLI             Best lifted index (°C)

LI500                Surface/500 mb lifted index, °C

BRN                 Bulk Richardson number (dimensionless)

SFC TOTALS    Surface total totals index (T1000 + TD1000 - 2T500), °C

U500                U-component of wind at 500 mb, m s-1 

THICK1000-500  Thickness between 1000 and 500 mb, m



Figure 1.  Vertically-integrated liquid (VIL) analysis over

southeastern Texas with severe local storm

probabilities plotted next to storm cells.

Figure 2.  Observed relative frequency of severe weather as a function of probability forecasts from LR

(red), NN (blue), and operational AWIPS SW P algorithm (black).



Figure 3.  Probability of detection (POD) and critical success index (CSI) as functions of regression and

neural network probability forecasts, independent data sample.

Figure 4.  False alarm ration (FAR) as a function of probability of detection (POD) for AWIPS SW P,

neural net (NN), and linear regression (REG) algorithms, within the independent dataset.


