
12.7   THE NCEP WRF CORE 
 

Zavisa I. Janjic* 
National Centers for Environmental Prediction, Camp Springs, Maryland 

 
 
1. INTRODUCTION computation of the corrections appearing in the first 

system.  The separation of the nonhydrostatic 
contributions shows in a transparent way where, how 
and to what extent the hydrostatic approximation affects 
the equations.  The described procedure does not 
require any linearization or additional approximation. 

 
 With constantly increasing horizontal resolution, 
numerical weather prediction models are approaching 
the limits of validity for the hydrostatic approximation.  
Although considerable experience with nonhydrostatic 
models has been accumulated on the scales of 
convective clouds and storms, numerical weather 
prediction (NWP) deals with motions on a much wider 
range of temporal and spatial scales.  Difficulties that 
may not be significant, or may go unnoticed at small 
scales, may become important in NWP applications.  
For example, an erratic gain or loss of mass would be 
hard to tolerate in an operational environment.  
Problems may also arise with spurious motions 
generated in the upper levels by the nonhydrostatic 
dynamics and numerics.  Forcing the variables in the 
top model layers toward a steady state in response to 
this problem is inadequate for NWP, and, on the other 
hand, specifying time dependent computational top 
boundary conditions would limit the ability of the nested 
model to produce more accurate forecasts than the 
parent model. 

 
2. MODEL EQUATIONS 
 
 For simplicity, as a representative of mass based 
vertical coordinates, consider the sigma coordinate 
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where π  is the hydrostatic pressure, and µ  represents 
the difference in hydrostatic pressure between the base 
and the top of the model column 
 
  . (2.2) ts ππµ -=
 
Here, and  stand for the hydrostatic pressures at 
the surface and at the top of the model atmosphere.  
Then, the equations governing a dry, inviscid and 
adiabatic nonhydrostatic atmosphere are (Janjic et al., 
2001; Janjic 2003) 

sπ tπ
 Having in mind these considerations, a novel 
approach (Janjic et al., 2001; Janjic, 2003) has been 
applied in the NCEP Nonhydrostatic Meso Model 
(NMM) that was developed within the Weather 
Research and Forecasting (WRF) initiative.  Namely, 
instead of extending cloud models to larger spatial and 
temporal scales, the hydrostatic approximation is 
relaxed in a hydrostatic NWP model using advanced 
numerics and a vertical coordinate based on hydrostatic 
pressure.  In this way, the applicability of the model is 
extended to nonhydrostatic motions and at the same 
time the favorable features of the hydrostatic formulation 
of the numerical algorithms have been preserved within 
the range of validity of the hydrostatic approximation. 
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  With this approach, the nonhydrostatic equations 
are split into two parts: (a) the part that corresponds to 
the hydrostatic system, except for corrections due to the 
vertical acceleration; and (b) the part that allows 
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Here, in the order of appearance,  is the horizontal 
wind vector, 

v
p  is the actual, nonhydrostatic pressure, 

R  is the gas constant for dry air, T  is temperature and 
 is geopotential.  The other symbols used have either 

their usual meaning, or their meaning is self-evident.  
Note that Φ , , and  are not independent variables. 

Φ

w ε
 The parameter ε  is the central point of the 
extended, nonhydrostatic dynamics.  As can be readily 
verified, if ε  is zero, the considered equations reduce to 
the familiar, hydrostatic system of equations.  On the 
synoptic scale,  is small and approaches the 
computer round–off error.  However, in the case of 
vigorous convective storms, or strong vertical 
accelerations in the flows over steep obstacles, ε can 
reach 10

ε

-3.  For this value of ε  the nonhydrostatic 
deviation of pressure can reach 100 Pa.  Bearing in 
mind that the typical synoptic scale horizontal pressure 
gradient is on the order of 100 Pa over 100 km, this 
suggests that significant local nonhydrostatic pressure 
gradients and associated circulations may develop at 
small scales.  Nevertheless,  remains much smaller 
than 1 in atmospheric flows, and, therefore, the 
nonhydrostatic effects are on a higher order of 
magnitude.  An important consequence of this situation 
for discretization is that a high accuracy of computation 
of  does not appear to be of paramount importance, 
since the computational errors are of even higher order 
than . 

ε

ε

ε
 The method of solving of the considered system of 
nonhydrostatic equations is presented in detail in Janjic 
et al. (2001).  Further details and updates are presented 
in Janjic (2003).  Here, only the basic principles of the 
discretization will be reviewed and the reader is referred 
to the quoted papers for more details. 
 
3. CLASSICAL NONHYDROSTATIC SOLUTIONS 
 
 In order to test the validity of the approach in the 
limit of highly nonhydrostatic flows, a two-dimensional 
model in the vertical plane was developed and run in a 
series of classical nonhydrostatic tests (Janjic et al., 
2001).  As is usual at these scales, the Coriolis force 
was neglected.  Some of the results of Janjic et al. 

(2001) obtained in the cold and warm bubble tests will 
be reproduced here as examples.  For more details 
about these and other tests, the reader is referred to 
Janjic et al. (2001). 
 Following Straka et al. (1993), in a neutrally 
stratified atmosphere with the potential temperature of 
3000K, an initial cold disturbance of the form 
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was introduced, where 
 
   m, m, 0=cx 3000=cz
   m, m. 4000=tx 2000=tz
 
The integration domain extended 40 km in the x 
direction, and the free surface was located at 442 hPa, 
or about 6400 m.  The center of the initial disturbance 
was in the middle of the domain in the x direction, 20 
km away from either of the lateral boundaries.  As in the 
main test in the Straka et al. (1993) study, the horizontal 
resolution was 100 m, and the vertical resolution was 
100 m on the average.  The time step was 0.3 s. 
 The potential temperatures after 300 s, 600 s and 
900 s are displayed in Fig. 1.  The area shown in the 
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Fig. 1.  The cold bubble test.  Initial potential 
temperature and the potential temperatures after 300 s, 
600 s and 900 s in the right hand part of the integration 
domain extending from the center to 19200 m, and from 
the surface to 4600 m.  The grid size is 100 
m and s.  The contour interval is 1

=≈ xz ∆∆
3.0=t∆ 0 K. 
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figure extends from the center of the domain to 19200 m 
to the right, and from the surface to 4600 m.  The 
contour interval is 10 K.  Comparison of the results 
obtained in this test (Janjic et al., 2001) with the Straka 
et al. (1993) converged reference solution reveals good 
quantitative and qualitative agreement. 
 The hydrostatic dynamics was unable to reproduce 
the results shown in Fig. 1 (Janjic et al., 2001).  The 
hydrostatic solution was computationally unstable 
unless the lateral diffusion was increased by an order of 
magnitude.  In that case, however, only very crude, 
qualitative resemblance to the nonhydrostatic solution 
was preserved. 
 The warm bubble test was designed following 
Gallus and Rancic (1996).  In a neutral atmosphere with  
the potential temperature of 3000K, an initial disturbance 
of the potential temperature 
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was introduced, where 
 
   m, m, 0=cx 2750=cz
   m, m. 2500=tx 2500=tz
 
The integration domain extended 20 km in the x 
direction.  The free surface was located at 135 hPa, or 
at about 13500 m.  The center of the initial disturbance 
was in the middle of the domain in the x direction, i.e., 
10 km away from either of the lateral boundaries.  The 
horizontal resolution was 100 m, and the vertical 
resolution was 100 m on the average.  The time step 
with this spatial resolution was 0.3 s, as before. 
 The potential temperature deviations after 360 s, 
540 s, 720 s and 900 s are presented in Fig. 2.  The 
area shown extends 16 km along the x axis, and from 
1000 m to 13200 m along the z axis.  The contour 
interval is 10K.  The rate of ascent and the intensity of 
the disturbance agree with those reported elsewhere. 
 

Fig.  2.  The potential temperature deviation after 360 s, 
540 s, 720 s and 900 s (from top to bottom) in the warm 
bubble test.  The area shown extends 16 km along the x 
axis, and from 0 m to 13200 m along the z axis.  The 
contour interval is 1 K0 . 

4. HORIZONTAL GRID AND HORIZONTAL 
 COORDINATES 
 
 The choice of the horizontal grid is one of the first 
decisions that needs to be made in the process of 
designing a numerical model of the atmosphere.    



Winninghoff (1968) and Arakawa and Lamb (1977) 
examined the frequencies of gravity-inertia waves 
obtained using second-order centered differences on 
various types of rectangular horizontal grids.  According 
to these studies, compared to other grids considered, 
generally better agreement with the exact frequencies 
were obtained on the staggered grid C, and on the 
semi-staggered grid B (or E) shown in Fig. 3.  The 
 

 
 
Fig. 3.  The staggered grid C and the semi-staggered 
grids B, E and Z.  
 
symbol h in the figure denotes the mass point variables, 
while the horizontal velocity vector and the velocity 
components are denoted, respectively, by v, u and v.  
However, the staggered grid and the semi-staggered 
grids are not without problems, either.  The problems on 
the staggered grid arise due to the averaging of the 
velocity components in the Coriolis force terms.  On the 
other hand, in order to illustrate the problems on the 
semi-staggered grids, consider the shallow water 
equations 
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Here, u and v are the velocity components, h is the 
height of the free surface, g is gravity, f is the Coriolis 
parameter assumed to be constant, and H is the mean 
depth of the fluid.  The other symbols used have their 
usual meaning.  The system (4.1) discretized in the 

most straightforward way, e.g., on the B grid, has the 
form 
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In (4.2), the symbol δ and the overbar, respectively, 
represent the simplest two-point centered differencing 
and averaging operators applied in the direction 
indicated by the accompanying subscript or superscript.  
Following Janjic (1984), the velocity components on the 
B grid may be written in terms of the velocity potential χ 
and the stream function ψ in the form 
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Then, after substituting the expressions (4.3) into the 
system (4.2), and rearranging the terms, one obtains 
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where repeated subscripts and superscripts indicate 
repeated applications of the accompanying operators.  
As can be seen from (4.4), the only possible reason for 
the B grid problems is the insufficiently accurate 
computation of the Laplacian due to the averaging of 
the derivatives of the velocity potential χ in the continuity 
equation.  An inspection of the finite difference 
equations (4.4) reveals that they are defined on a 
nonstaggered grid, carrying all three variables χ, ψ and 

 at each grid point (Janjic 1984).  This type of grid is 
also shown in Fig. 3.  It was named Z grid by Randall 
(1994).  Thus, the B grid, together with the definitions 
(4.3), is equivalent to the Z grid.  However, there is an 
important difference between the B and Z grid 
simulations of the gravity-inertia wave propagation.  On 
the Z grid, the continuity equation can be written in the 
form 

h
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without the averaging in the divergence term that was 
responsible for the B grid problems.  However, an 
application of the Z grid in the case of more complex 
equations would require costly conversions between the 



velocity components and the velocity potential and the 
stream function.  A more complete comparison of the 
properties of the remaining two possibilities, the 
staggered grid C and the semi-staggered grids B and E 
can be found, e.g., in Janjic and Mesinger (1984, 1989).  
These considerations, however, do not give a decisive 
advantage to either of the two choices.  The problems 
on the semi-staggered grids B and E are restricted 
mainly to the shortest waves, while in the case of slow 
internal modes and/or weak stability, the C grid may 
develop problems over the entire range of admissible 
wave numbers (Arakawa and Lamb, 1977).  In addition, 
there is an effective technique for filtering the low 
frequency, short-wave noise resulting from inaccurate 
computation of the divergence term on the semi-
staggered grids (Janjic, 1979).  More sophisticated, 
nondissipative methods (“deaveraging” and 
“isotropisation”) for dealing with the problem also have 
been proposed (Janjic et al., 1998), leading to dramatic 
improvements in the finite-difference frequencies of 
short gravity-inertia waves on the semi-staggered grids. 
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Fig. 4.  The ratio υ as a function of wave number. fC /
 

minimum=  .9910E+03 maximum=  .1031E+04 interval=  .1000E+01                    
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 The results discussed so far are relevant for 
classical synoptic scale models.  In order to address the 
question of the horizontal grid choice as the mesoscales 
are approached, the linearized anelastic nonhydrostatic 
system is a better starting point than the linearized 
shallow water equations (4.1) (communicated by Klemp, 
1997; Janjic, 2003).   
 As before, the problems on the B grid are mainly 
due to averaging within the divergence term, and on the 
C grid are mainly due to the averaging of the Coriolis 
force.  For example, if the ratio between the horizontal 
grid size and the vertical grid size is 30, , 
the Brunt-Vaisala frequency is , and the 
wavelength in the vertical is 32 grid intervals, the true 
relative frequency  and the relative frequency on 
the B grid are both equal to unity throughout the 
admissible wave number range.  On the other hand, as 
can be seen from Fig. 4, with the same values of the 
parameters the relative frequency on the C grid is not a 
constant.  This leads to a nonzero group velocity 
throughout the admissible wave-number range, 
including the longest waves.  For more details 
concerning this example, the reader is again referred to 
Janjic (2003). 
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 On the other hand, the example shown in Fig. 5 
indicates how bad the problem can be on the B grid.  
The two 24 hour sea level pressure forecasts shown in 
the figure were computed using 30 km horizontal 
resolution and very light dissipation.  The contour 
interval was set to 1 hPa in order to emphasize any 
noise that might develop.  The forecast in the upper 
panel was obtained by doing nothing to alleviate the B 
grid 

Fig. 5.  Examples of 24 hour forecasts of the sea level 
pressure on the B grid without any control of the grid 
separation problem (upper panel) and with deaveraging 
(lower panel).  The contour interval is 1 hPa.  



problem, while the forecast in the lower panel was 
obtained using well converged “deaveraging” (Janjic et 
al., 1998), which substantially improves the frequencies 
of gravity-inertia waves on the B grid.  As can be seen 
by comparing the forecasts in the upper panel and in the 
lower panel, the presence of the problem cannot be 
visually detected.  The forecast in the upper panel 
generally is not noisier than the forecast in the lower 
panel.  This result appears to be in conflict with an 
earlier result (Janjic, 1979).  However, in the earlier test 
the horizontal resolution was 160 km, so the advection 
had a lesser effect in providing communication between 
the grid points than in the current test with the 30 km 
resolution. 
 Since the problems on the semi-staggered grid B 
are restricted to the shortest resolvable scales, and they 
are less sensitive to the stability and choice of vertical 
and horizontal grid sizes, preference was given to the 
semi-staggered grids.  For historical reasons, the E grid 
is used in the initial version of the NCEP Nonhydrostatic 
Meso model (NMM), although a B grid version with 
identical properties also exists (Janjic, 2003). 
 The longitude-latitude coordinates are rotated in the 
model in such a way that the coordinate origin is located 
in the middle of the integration domain.  In this way, the 
reduction in longitudinal grid-size is minimized as the 
southern and the northern boundaries of the integration 
domain are approached, and, therefore, longer time 
steps can be used. 
 
5. VERTICAL COORDINATE AND VERTICAL 
 STAGGERING 
 
 By far the most widely used method for 
representing topography are terrain following 
coordinates such as the sigma coordinate (Phillips, 
1957), or its extensions such as the hybrid sigma-
pressure coordinate of Arakawa and Lamb (1977), or 
the hybrid eta coordinate of Simons and Burridge 
(1981).  A rare exception has been the step-mountain 
blocking used in the NCEP Meso (Eta) model.  
Originally proposed by Bryan (1969), and subsequently 
widely used in oceanography, this technique was 
implemented in an atmospheric model by Mesinger et 
al. (1988).  Yet another possibility for the representation 
of topography is the shaved cell method (e.g. Adcroft et 
al. 1997).  Steppeler et al. (2002) reported a successful 
application of this approach in the Local Model (LM) of 
the German Weather Service. 
 The advantage of the step-like mountain 
representation is that the coordinate surfaces are 
quasi-horizontal.  This, however, is not without 
consequences.  For example, internal discontinuities are 

introduced at the vertical sides of the steps that replace 
mountain slopes, and lateral boundary conditions are 
required at these discontinuities.  The formal accuracy 
of the finite-differences at points next to the internal 
boundaries is reduced to the first order.  In addition, if 
no slip boundary conditions are used in order to 
preserve the major favorable features of the 
finite-differencing schemes (Janjic, 1977, 1979, 1984), a 
nonphysical sink of momentum is introduced.  Yet 
another problem is the representation of physical 
processes in the surface layer and the planetary 
boundary layer (PBL).  If one wants to represent these 
processes in a reasonably uniform way throughout the 
integration domain, including both low-lying and 
elevated terrain, an approximately equidistant spacing 
of the vertical levels is required in the lowest few 
kilometers of the atmosphere.  However, the vertical 
resolution needed in order to achieve this goal is still too 
high.  In addition, several recent studies (Adcroft et al, 
1997; Gallus, 2000; Gallus and Klemp, 2000; Janjic and 
DiMego, 2001; Gavrilov, 2002) indicate that more 
problems should be expected at higher resolutions.   
 The shaved cell approach has problems associated 
with complex lower and internal boundary conditions.  In 
addition, as with the step-mountains, vertical resolution 
is reduced over elevated terrain, which poses additional 
problems for physical parameterizations. 
 Thus, despite of all its imperfections, the terrain-
following hybrid pressure-sigma vertical coordinate 
(Arakawa and Lamb, 1977) has been chosen as the 
best compromise (Janjic, 2003).  With the hybrid 
coordinate, coordinate surfaces are flat above and away 
from the mountains.  In the vicinity of mountains the 
hybrid coordinate has increased vertical resolution, and 
the equations are continuous, without the computational 
internal boundary conditions.  Since hydrostatic 
pressure is currently used as the vertical coordinate 
above 400 hPa, possible inaccuracies due to the 
sloping coordinate surfaces are restricted to only the 
lower half of the mass of the atmosphere.  Note that, 
generally, the largest errors in the sigma coordinate 
occur in the stratosphere.  Thus, with the hybrid 
coordinate, the most serious problems associated with 
sloping sigma surfaces are eliminated.  In addition, the 
increased resolution presumably acts in the direction of 
reducing computational inaccuracies, and certainly 
improves the representation of the vertical PBL structure 
over elevated terrain. 
 The usual, Lorenz vertical staggering of the 
variables is used in the vertical (Janjic, 1977).  The 
geopotential and nonhydrostatic pressure are defined at 
the interfaces of the layers, while all three velocity 
components and temperature are carried in the middle 



layers of the model.  The vertical velocity is defined at 
the E grid mass points. 

 The Z grid equivalent of the E grid used to define 
the quantities (6.1)-(6.3) is shown in Fig. 6 together with 
the orientation of the coordinate axes x,y and x’,y’   

6. SPATIAL DISCRETIZATION  
 

 

 Conservation of major integral properties such as 
energy and enstrophy has been the basic philosophy of 
the discretization that can be tracked back to the paper 
by Janjic (1977).  Since then, however, the numerical 
schemes used in the model have been further refined.  
Perhaps the most significant upgrade was the 
introduction of new schemes for calculating the 
contribution of nonlinear advection terms and horizontal 
divergence operators (Janjic, 1984).  Properties of the 
momentum advection scheme were further investigated 
by Gavrilov and Janjic (1989).  In the current model 
formulation, all divergence operators are computed 
using the fluxes between each point and its eight 
nearest neighbors.  This “isotropic” divergence operator 
is used in the Arakawa Jacobian, and also in the 
hydrostatic continuity equation in order to compute the 
divergence of mass. 

 
Fig. 6.  The Z grid equivalent of the E grid.  Orientations 
of the coordinate axes x,y and x’,y’ are indicated. 

 In the case of rotational flow and cyclic boundary 
conditions, the scheme for horizontal advection of 
momentum on the E grid conserves the following 
properties: 

 
appearing in (5.1)-(5.3).  As before, φ and ψ are the 
velocity potential and the stream function, respectively, 
and h stands for mass point variables.  The symbol  
denotes the area of the grid boxes, and the summation 
sign with the subscripts i,j represents the horizontal 
summation. 
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● Enstrophy as defined on the staggred grid C (i.e. 
using the most accurate second-order approximation of 
the Laplacian in order to compute vorticity),  
  In the case of general flow, the scheme conserves: 
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● Momentum as defined on the semi-staggered grid 
E.  
 ● Rotational momentum as defined on the staggered 

grid C, In (6.4), the summation sign indicates summation over 
all grid points, and the symbol  denotes the grid box 
volume in hydrostatic vertical coordinates. 

V∆● Rotational kinetic energy as defined on the semi-
staggered grid E, 
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 The scheme for horizontal advection of temperature 
also conserves the first and the second moments of 
temperature.  Finally, in the hydrostatic limit, when 
dw/dt tends to zero, the exact cancellation is achieved 
between the contributions of the pressure gradient force 
to the kinetic energy generation, and the  term of 
the thermodynamic equation, which guarantees 
consistent transformations between kinetic and potential 
energy, and the conservation of total energy.  Note that 

ωα
 
● Rotational momentum as defined on the semi-
staggered grid E. 



the treatment of the ωα  term implies exact cancellation 
of the contribution from advection of pressure in the 
thermodynamic equation and the contribution from the 
second term of pressure gradient force in the 
momentum equations.  The relevant finite-difference 
schemes were presented in Janjic (1977), and their 
generalizations for the “isotropic”, 8-flux divergence 
operators were discussed in Janjic (1984) and further 
documented, e.g., in Mesinger et al. (1988). 
 Exact energy conservation is not currently required 
in the case of fully nonhydrostatic equations.  In this 
case, the terms involving gdtdw )(=ε  are of a 
higher order than quadratic, and gdtdw )(=ε  is 
small compared to unity in the weakly nonhydrostatic 
flows that can be expected in NWP applications.  On the 
other hand, at the scales and in flow regimes where the 
contribution of gdtdw )(=ε  becomes significant, the 
dissipation starts to play a prominent role in creating 
strong energy sinks. 
 Two options are available in the model for dealing 
with the problem of semi-staggered grids with the 
frequencies of short gravity-inertia waves.  The first is 
the selective filtering technique proposed in Janjic 
(1979).  The second is the deaveraging technique 
proposed by Janjic et al. (1998).  The deaveraging is 
computationally very efficient and requires only a few 
simple iterations on the hydrostatic pressure tendency.  
Although the deaveraging is non-dissipative, and 
therefore physically better founded, the dramatic 
improvement in the frequencies of the shortest gravity-
inertia waves achieved on the semi-staggered grids 
requires that the time step be significantly reduced, 
which leads to reduced computational efficiency in the 
model.  Thus, it is not obvious which of the two options 
should be given preference in practical NWP 
applications, particularly in the light of the situation 
shown in Fig. 5. 
 Concerning the vertical discretization of the basic 
dynamical variables, quadratic conservative vertical 
advection is used.  In addition to material surface 
boundary conditions requiring that the total derivative of 
the vertical coordinate (vertical velocity) be equal to zero 
at the top and bottom of the model’s atmosphere, 
vertical boundary conditions are needed also for the 
nonhydrostatic deviation of pressure.  It is assumed that 
the nonhydrostatic pressure deviation vanishes at the 
top of the atmosphere, while its vertical derivative 
vanishes at the bottom (Janjic et al., 2001). 
 The centered conservative schemes used for 
advection of the basic dynamic variables develop well 
known problems in case of advection of positive definite 
scalars with large spatial variation, such as specific 
humidity, cloud water, or turbulence kinetic energy.  For 
this reason, an upgraded version of the scheme used 

for advection of passive substances in the NCEP Meso 
(Eta) model (Janjic, 1997) is applied.  The scheme 
consists of three steps.  In the first step, an upstream 
biased scheme is used to advect the passive substance.  
In the second step, antifiltering is applied with 
antifiltering parameters optimized in such a way as to 
minimize the computational dispersion in sheared flows.  
Finally, in the third step, forced conservation of the 
advected quantity is imposed.  The scheme appears to 
be a reasonable compromise between the requirements 
for accuracy and computational efficiency. 
 
7. TIME DIFFERENCING 
 
 The hydrostatic core of the system of 
nonhydrostatic equations (2.1)-(2.10) is split into the 
following two subsystems (Janjic, 1979; Janjic et al., 
2001; Janjic, 2003) 
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The time derivatives of the two subsystems are denoted 
by subscripts i and ii, respectively.  The systems (7.1)-
(7.3) and (7.4)-(7.5) are solved using different time 
stepping methods.  Note that the splitting is not done by 
automatically separating all the advection terms.  
Namely, the system with subscripts i includes the 
advection of pressure in the omega-alpha term of the 
thermodynamic equation.  The contribution of this term 
compensates for kinetic energy production by the 
pressure gradient force in the total energy equation.  As 
can be readily verified, due to the presence of this term 
the system (6.1)–(6.3), conserves energy.  The system 
(6.4)–(6.5) also conserves energy, except for changes 
due to the redistribution of mass. 
 An economical forward–backward scheme (Ames, 
1969; Gadd, 1974; Janjic and Wiin–Nielsen, 1977; 
Janjic, 1979) has been used for the system (7.1)–(7.3).  



8. FIRST EXPERIENCES IN OPERATIONAL The properties of the scheme used in the model were 
examined in the case of linearized shallow water 
equations by Janjic and Wiin–Nielsen (1977) and Janjic 
(1979).  Concerning the contributions of the advection 
terms (7.4)–(7.5), historically the split, iterative, first–
forward–then–(slightly off–) centered time differencing 
scheme has been applied with time steps twice as long 
as those used to solve the subsystem (7.1)–(7.3) 
(Janjic, 1979).  This combination has worked very well 
in the hydrostatic model at synoptic scales (Janjic et al., 
1995).  However, in the nonhydrostatic model, two-grid-
interval noise in time develops with this scheme at high 
resolution (Janjic, 2003).  For this reason, the two–step 
iterative scheme for horizontal advection has been 
replaced by the Adams–Bashforth scheme using a short 
time step.  The Adams–Bashforth scheme allows about 
the same computational efficiency as the two–step, 
iterative scheme with the longer time steps, and the 
accuracy is improved.  However, somewhat more 
memory is needed in order to store some of the 
variables at the third time level, and the physical mode 
of the Adams–Bashforth scheme is weakly unstable.  
This instability can be tolerated if the time steps are not 
too long, or eliminated by a very slight off-centering 
which preserves the second order accuracy.  Note that 
large ratios between the advection time step and the 
time step used for the remaining terms of the equations 
cannot be used in NWP applications.  This ratio is 
restricted to only about 2 on the semi-staggered grids, 
where longer short steps can be used than those 
allowed by the CFL criterion on the staggered C grid. 

 APPLICATIONS 
 
 Since July 2002, the NMM has been run 
operationally in NCEP High Resolution windows in six 
nested domains (Western, Central, Eastern, Alaska, 
Hawaii, Puerto Rico) shown in Fig. 7.  The horizontal 
resolution is 8 km for all domains except for the Alaska 
domain, where the horizontal resolution is 10 km.  The 
model has 60 unequally spaced levels in the vertical. 
 

 
 
Fig. 7.  The six High Resolution Windows: Western, 
Central, Eastern, Alaska, Hawaii and Puerto Rico. 
 
 The model topography is defined as unfiltered 
gridbox means of 30’’ USGS Digital Elevation Model 
data.  The model does not have its own dedicated data 
assimilation system.  The initial and boundary conditions 
are defined by interpolation of the operational Meso 
(Eta) model data.  The Meso (Eta) model is run with 12 
km resolution and 60 levels in the vertical. 

 The trapezoidal scheme for Coriolis force terms has 
been also been recently replaced by the Adams-
Bashforth scheme.  The reason for this change was the 
possibility of the trapezoidal scheme overestimating the 
amplitude of the divergent part of flow (Janjic and Wiin-
Nielsen, 1977). 

 In the two small domains (Hawaii and Puerto Rico), 
the model is run twice a day starting from 00 UTC and 
12 UTC.  In the remaining four domains, the model is 
run once a day starting from 00 UTC (Alaska), 06 UTC 
(Western), 12 UTC (Central) and 18 UTC (Eastern).  
The forecasts are computed up to 48 hours. 

 For simplicity, the time differencing has been 
presented using only the hydrostatic part of the model 
dynamics.  The treatment of the contribution of 
nonhydrostatic dynamics is more involved, and the 
details on the time stepping procedures used can be 
found in Janjic et al. (2001) and Janjic (2003).  A novelty 
in the treatment of the nonhydrostatic terms is that the 
iterative method for solving the vertical implicit pressure 
equation discussed in Janjic et al. (2001) has been 
replaced by a direct solver.  This modification has 
brought a visible further improvement in the 
computational efficiency of the model.  Currently, the 
passive substance transport remains the single most 
expensive part of the model dynamics. 

 The computational efficiency of the model has been 
very high, substantially higher than the computational 
efficiency of most established nonhydrostatic models.  
Moreover, further significant improvement of the 
computational efficiency of the model is possible.  The 
model has been highly reliable and there have been no 
failures since operations started. 
 In terms of performance at synoptic scales, 
generally the model has been highly competitive with 
mature high-resolution NWP models, despite the fact 
that it has been handicapped by inconsistent initial and 
boundary conditions and a relatively small integration 
domain.  As shown in Fig. 14 (courtesy of Eric Rogers), 
the most dramatic differences between the Eta model 
and the NMM can be seen in vertical structures.  The 

 



panels in the column on the left are from the 12 km 
Meso (Eta) run, and the panels in the column on the 
right are from the NMM Eastern domain run.  The 
middle and bottom panels of the two columns represent 
12 hour and 15 hour forecast cross sections, 

respectively, starting at 18 UTC, January 7, 2003.  The 
cross sections are taken along the blue lines in the top 
panels.  The topography is indicated in the top panels 
by color shading with the contours at 100, 175,

 

                  

 

 
 
Fig.  14.  The 12 km Meso (Eta) (left column) and the 8 km NMM Eastern Domain (right column) cross sections.  The 
middle and bottom panels are 12 hour and 15 hour forecasts, respectively, starting at 18 UTC, January 7, 2003.  The 
cross sections are taken along the blue lines in the top panels.  The topography is indicated in the top panels by color 
shading with the contours at 100, 175, 250, 375, 500, 750, 1000, 1250 etc. meters, and by the shaded area at the 
bottom of the cross sections.  The blue and brown contour lines are negative (upward) and positive (downward) 
values of vertical velocity , respectively.  The contour interval is 0.2 Pa sdtdp /=ω -1.  The dashed red contour lines 
are potential temperature with a contour interval of 4 degrees.  The background color shading in the cross sections 
represents isotachs with the contour interval of 10 Knts. (Courtesy of Eric Rogers) 



250, 375, 500, 750, 1000, 1250 etc. meters, and by the 
shaded area at the bottom of the cross sections.  The 
blue and brown contour lines indicate negative (upward) 
and positive (downward) values of vertical velocity 

, respectively.  The contour interval is 0.2 
Pa s

dtdp /=ω
-1.  Potential temperature is represented by the 

dashed red contour lines with a contour interval of 4 
degrees.  The background color shading in the cross 
sections represents isotachs with a contour interval of 
10 Knts. 
 As can be seen from the figure, the vertical motions 
are much stronger in the NMM than in the Meso (Eta) 
model.  Moreover, the wave length of mountain waves 
in the NMM is much shorter than in the Meso (Eta) 
model.  Also, the effect of vertical transport of 
momentum is visible in the bottom panels, particularly in 
the case of the NMM.  In addition to resolution, the 
representation of mountains and the nonhydrostatic 
dynamics are believed to have played a role in 
producing such different results.  A more detailed 
discussion of model performance measures and 
examples of model forecasts have been/will be 
presented elsewhere (Black, 2002; Janjic, 2003). 
 
9.  SOME RECENT IMPROVEMENTS 
 
9.1  The Convection Scheme 
 
 The Betts-Miller-Janjic deep convection scheme 
(Janjic, 1994, 2001) can be introduced with a simple 
dimensional formalism.  Namely, first the determining 
parameters are identified as 
 
● Entropy change over time step 
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● Precipitation over time step 
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Here, p  is pressure, T  is temperature, q  is specific 
humidity, and the summation is performed from cloud 

base to cloud top.  The other symbols used have their 
usual meaning. 
 Then, a nondimensional combination of the 
determining parameters is defined 
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The non-dimensional quantity E  is called “cloud 
efficiency.”  Depending on E , the equilibrium 
temperature and moisture profiles oscillate between 
universal heavy convection profiles based on the Betts 
(1986) profiles, and the moist adiabat (Janjic, 1994).  
When  and, consequently, S∆ E  tend to zero, the 
profiles approach the moist adiabat.  In the case of large 
entropy changes relaxation toward the reference profiles 
is faster than in the case of more stable stratification 
closer to the moist adiabat (Janjic, 1994). 
 Recent upgrades of the deep convection algorithm 
include iterative computation of cloud efficiency and an 
iterative search for the cloud top.  The latter reduces the 
number of points with aborted deep convection.   
 Furthermore, an attempt has been made to improve 
the transition between the convection and the grid-scale 
precipitation that depends on resolution.  Namely, the 
entropy change measures the stabilization of the 
column.  Thus, if the threshold for entropy change 
needed for the onset of the deep convection is 
increased with increasing resolution, the instabilities that 
were handled by the parameterization of convection at 
coarser resolutions will be treated explicitly at higher 
resolutions. 
 An example of accumulated 24 hour precipitation 
for the tropical storm Isabel, obtained using several 
modifications (including the described modifications of 
the convection scheme other than changing the 
threshold for the entropy change), is shown in the upper 
left panel of Fig 15.  The precipitation forecast in the 
upper right panel illustrates the impact of the increased 
threshold for the entropy change required for the onset 
of the deep convection.  Finally, the verifying analysis 
valid on September 19, 2003 at 12Z is shown in the 
lower panel.  The same color code is used for all the 
forecast and verification plots. 
 As can be seen from the plots, an already 
remarkably good forecast has had a significant further 
improvement by modifying the entropy change criterion, 
particularly in Pennsylvania.  The minute details 
successfully reproduced by the model in Northern 
Virginia (next to the border with West Virginia) should be 
noted as well. 



 
 

 
 
 

Fig. 15.  Accumulated 24 hour precipitation for the tropical storm Isabel without increased entropy change threshold 
(upper left panel), with increased entropy change threshold (upper right panel), and the verifying analysis valid on 
September 19, 2003 at 12Z (lower panel). 
 



9.2  Lateral Diffusion on Sloping Surfaces solid blue and pink lines respectively.  The 
corresponding RMS errors are shown in the figure by 
dashed blue and pink lines.  As can be seen from the 
plots, the difference in bias errors between the two 
models has been significantly reduced after the 
introduction of the modifications, and the NMM has 
started winning the RMS score in this domain as well. 

 
 It has been known for a long time that horizontal 
diffusion applied in terrain-following coordinates can 
create spurious instabilities and precipitation by 
transporting heat and moisture from surrounding valleys 
to hill tops.  In order to cope with this problem, as an ad 
hoc measure, the lateral diffusion of heat and moisture 
is switched off if the slope of the coordinate surfaces 

 exceeds 0.001. xz ∆∆ /

 
10. THE OBSERVED MESOSCALE SPECTRUM AND 
 THE NMM NONLINEAR DYNAMICS 

  
9.3  Lateral Boundary Conditions  Nastrom and Gage (1985) examined 

measurements made by commercial aircraft and found 
that one-dimensional kinetic energy spectra along their 
flight-paths in the lower stratosphere and in the upper 
troposphere follow the –5/3 slope in the range from 
several hundred kilometers to several kilometers.  As of 
now, there is no universally accepted explanation of this 
spectral shape.  Several possible explanations have 
been proposed (e.g. Gage, 1979; Lilly, 1983; Gage and 
Nastrom, 1986; Tung and Orlando, 2003).  They include 
downscale nonlinear energy cascade and an inverse 
cascade from smaller to larger scales. 

 
 A high positive bias in geopotential height at 500 
hPa has been observed this summer in the High 
Resolution and Fire Weather domains with lateral 
boundaries running through mountainous areas.  
Inspection of the temperature forecasts did not reveal 
signs of overheating of model’s atmosphere.  Since the 
model conserves the mass exactly, an imbalance of 
inflow and outflow of mass remained as the main 
suspect for the problem. 
 In order to improve the accuracy of mass flux 
interpolation along the lateral boundaries, the local 
quadratic interpolation in the vertical was replaced by 
cubic spline interpolation, and, in addition, the vertical 
integrals of mass fluxes along the lateral boundaries 
after the vertical interpolation are required to coincide 
with those before the interpolation. 

 Using two-parameter quasi-geostrophic dynamics, 
Tung and Orlando (2003) demonstrated that given 
enough time to reach the statistical equilibrium, the –5/3 
spectral range can be generated through a downscale 
cascade of energy.  Similar statistical properties of the 
spectra were obtained in extended simulations using the 
GFDL SKYHI model with quite modest horizontal 
resolution (but still higher than usual for a climate 
model) (e.g., Hamilton et al., 1999; Kosyik and 
Hamilton, 2001).   

 These simple modifications have been introduced 
into the operations starting at the 12Z cycle on October 
7, 2003, and resulted in a dramatic improvement of the 
scores.  For example, the mean errors in 500 hPa 
geopotentials in the Central Domain for the Eta and for 
the NMM are shown in Fig. 16 by the  

 Recently, there have been reports that the –5/3 
spectral range has been successfully reproduced in 
short-range integrations (up to two days) using a high-
resolution mesoscale atmospheric model over 
mountainous areas (communicated by Skamarock).  
Generally, this should come as no surprise considering 
that models with much simpler dynamics and coarser 
resolution have successfully spun-up the –5/3 spectrum 
(e.g., Hamilton et al., 1999; Kosyik and Hamilton 2001; 
Tung and Orlando, 2003).  However, these mesoscale 
runs were made on a much shorter time scale than 
those considered in most previous studies.  Namely, the 
statistical properties of atmospheric spectra are typically 
investigated in extended integrations (tens or hundreds 
of days), and the spectra are averaged over long 
periods (tens or hundreds of days) in order to ensure 
that statistical equilibrium is reached.  The need for 
extended integrations and long averaging periods arises 
due to the time scale of the nonlinear cascade. 

 

 
 
Fig. 16.  The mean errors in 500 hPa geopotential in the 
Central Domain for the Eta (solid blue line) and for the 
NMM (solid pink line) and the RMS errors for the Eta 
(dashed blue line) and the NMM (dashed pink line).  Despite the time scale problem, in short range runs 

the model spectrum can perhaps still be close to the 



statistical atmospheric spectrum if the initial data are 
well balanced and do not deviate too much from 
observed statistics.  However, consider the possibility 
that the initial data are not well balanced, and that they 
do deviate considerably from the observed atmospheric 
spectrum in the mesoscale range.  This may be, for 
example, due to the imperfections of the driving model, 
or to the set-up of the data assimilation system.  In 
addition, the size of the integration domain in mesoscale 
runs is typically smaller than the size of large-scale 
atmospheric disturbances that feed the downscale 
nonlinear cascade.  Thus, it appears that physical or 
spurious sources of energy other than the downscale 
nonlinear cascade from large-scale motions are needed 
in order to generate and maintain the –5/3 spectra in 
mesoscale atmospheric models. 
 Possible sources that can generate and maintain 
the –5/3 spectrum in mesoscale models may be (a) 
physically justified mesoscale forcing, (b) early collapse 
of the spectrum due to spurious computational nonlinear 
cascade, (c) other small-scale computational errors 
such as errors due to the representation of topography, 
etc.  In order to clarify the situation, several tests have 
been performed using two versions of the NMM, the 
parallel version on the E grid (WRF-NMM) and the PC 
version on the B grid (NMM-B).  Both versions were 
designed by applying the same principles in the 
discretization of the model dynamics and share the 
same physical package (Janjic et al., 2001; Janjic, 
2003). 
 It should be noted that the WRF-NMM and the 
NMM-B are well qualified for investigating atmospheric 
spectra.  They conserve energy and enstrophy, which 
generally improves the accuracy of the nonlinear 
dynamics.  In particular, the energy and enstrophy 
conservation controls the nonlinear energy cascade and 
restricts an early spurious energy transfer toward 
smaller scales by nonlinear interactions.  The energy 
conservation improves the stability of the model and 
eliminates the need for excessive dissipation (either 
explicit or built into the finite-difference schemes) that 
could affect the spectra generated by the model.  In 
addition, WRF-NMM and NMM-B use the hybrid 
pressure-sigma vertical coordinate, so that (except for 
errors propagating from below) in the upper troposphere 
and in the stratosphere they are relatively free of the 
sigma coordinate errors that are largest at higher 
altitudes.  Finally, explicit formulation of major 
dissipative processes allows precise “dosage” of 
dissipation. 
 The topography used in all tests is defined as grid-
box means of the USGS 30’’ global data.  Except in ten 
rows along the lateral boundaries, no smoothing or 
filtering is applied.  The test with the operational set-up 

of WRF-NMM over the Central Domain, but in the sigma 
coordinate, generated the –5/3 spectral slope on 
constant pressure surfaces in the upper troposphere 
and stratosphere.  An example of the spectrum (blue 
diamonds) obtained at the 300 hPa level, and averaged 
over forecast times from 24 to 36 hours with 3 hour 
intervals, is shown in Fig. 17.  As can be seen from the 
figure, the model develops the spectrum (blue  
 

NMM sigma 300 hPa 24-36 Sep 08, 2003, GFS data
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Fig. 17.  The WRF-NMM spectrum (blue diamonds) at 
300 hPa averaged over forecast times from 24 to 36 
hours with 3 hour intervals produced with operational 
set-up in Central Domain, but in the sigma coordinate.  
The –3 (pink squares) and –5/3 (yellow triangles) slopes 
are shown for comparison. 
 
diamonds) following the –3 (pink squares) and the –5/3 
(yellow triangles) slopes that is in very good agreement 
with observations. 
 However, there are problems with interpretation of 
this result.  Namely, when the operational set-up of the 
WRF-NMM is run in the hybrid coordinate, the spectrum 
at the small scales remained steeper than the –5/3 
slope and approached the –3 slope (not shown).  
Another reason for concern is that, as can be seen from 
Fig. 18, the spectrum of the square of unfiltered 



 In order to investigate the possible effects of 
topography, the NMM-B was run using 15 km  of 
horizontal resolution and 32 levels of vertical in a 
domain same size as the Central Domain, but over the 
Atlantic Ocean.  In this way the possibility of mountains 
influencing the energy spectrum is eliminated.  In 
addition, in a major deviation from the operational set-
up, the lateral diffusion was turned off in order to 
facilitate and speed-up the accumulation of energy at 
small scales.  However, weak divergence damping was 
still used. 

topography (blue diamonds) follows the –5/3 law in the 
mesoscale range.  This result, together with the lack of 
–5/3 range in the hybrid coordinate runs, calls into 
question the validity of the interpretation of the results 
obtained in the sigma coordinate over mountainous 
areas as the model generated Nastrom and Gage 
(1985) spectra.  Namely, the –5/3 spectrum in the upper 
troposphere and in the stratosphere could be generated 
by nonlinear cascade of spurious energy due to the 
sigma coordinate errors.  In this case, the computational 
 

 The evolution of NMM-B spectra at 300 hPa over 
Atlantic Ocean (blue lines) is shown in Fig. 19 at 6 hour 
intervals (6-24 hours, top to bottom in the left column 
and 30-48 hours, top to bottom in the right column).  
The –3 (pink lines) and –5/3 (yellow lines) slopes are 
shown for comparison.  The spectral time average over 
36-48 hours is shown in Fig. 20.  As can be seen from 
Fig. 20, by the end of the forecast, the model (blue 
diamonds) developed the –3 (pink squares) and the –
5/3 (yellow triangles) spectral ranges that agree well 
with observations.  However, as can be seen from Fig. 
19, it needed 24-36 hours to do so.  Note that the sharp 
drop-off of the spectrum that is usually seen in 
numerical simulations at the small-scale end of the 
spectrum is missing here because of very weak 
dissipation. 
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 The WRF-NMM run in the Eastern Domain in the 
case of hurricane Isabel (initial data September 17, 18Z, 
from the Eta data) with 8 km resolution and 60 levels, 
and with no lateral diffusion, showed consistent 
behavior.  The evolution of WRF-NMM spectra (blue 
lines) at 300 hPa in the Eastern Domain is shown in Fig. 
21 at 6-hour intervals (6-24 hours, top to bottom in the 
left column, 30-48 hours, top to bottom in the right 
column).  The –3 (pink lines) and –5/3 (yellow lines) 
slopes are shown for comparison.  The time average 
over 36-48 hours of the spectra (blue diamonds) is 
shown in Fig. 22 together with the –3 (pink squares) and 
–5/3 (yellow triangles) slopes.  As can be seen from Fig. 
22, by the end of the forecast the WRF-NMM also 
generated well developed –3 and–5/3 spectral ranges in 
agreement with the observations.  However, as can be 
seen from Fig. 21, WRF-NMM needed some time to do 
so, but perhaps somewhat less than in the previous run 
of NMM-B over the Atlantic Ocean.  It may be that the 
generation of the –5/3 spectrum was aided in this case 
by a more vigorous downscale nonlinear energy 
cascade since there was more energy at scales smaller 
than the integration domain size. 

 
Fig. 18.  The spectrum (blue diamonds) of the square of 
unfiltered topography height in the NMM-B Central 
Domain with 15 km resolution.  The –3 (pink squares) 
and –5/3 (yellow triangles) slopes are shown for 
comparison. 
 
noise would be mistaken for the Nastrom and Gage 
(1985) spectrum.  On the positive side, one could argue 
that the nonlinear dynamics still performed well 
generating the –5/3 spectrum, although for a wrong 
reason.  However, considering the shape of the 
mountain spectrum, the –5/3 spectrum observed in 
model integrations over mountainous areas could be 
simply a projection of the spectrum of topography, and 
thus may have nothing to do with nonlinear dynamics. 

 As expected on the basis of theoretical 
considerations, the presented results demonstrate that 
the nonlinear dynamics used in the NMM have been 
successful in reproducing the observed mesoscale  
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Fig. 19.  Time evolution of the NMM-B spectra (blue lines) at 300 hPa over Atlantic Ocean.  .  The –3 (pink lines) and 
–5/3 (yellow lines) slopes are shown for comparison Run starting from 12 UTC, 09/07/2003, GFS data, 15 km, 32 
levels resolution.  No lateral diffusion, weak mass divergence damping.  Plots every 6 hours, top to bottom, 6-24 left 
column, 30-48 right column. 
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 The NCEP nonhydrostatic meso model (NMM) 
(Janjic et al., 2001; Janjic, 2003) has been formulated 
by building on the experience of high resolution 
hydrostatic numerical weather forecasting.  In this way, 
the favorable features of hydrostatic model formulation 
are preserved within the valid range of the hydrostatic 
approximation. 
 The basic idea applied was to split the system of 
nonhydrostatic equations into two parts: (a) the part that 
corresponds basically to the hydrostatic system, except 
for higher order corrections due to vertical acceleration, 
and (b) the system of equations that allows the 
computation of corrections appearing in the first system 
due to vertical acceleration.  This procedure does not 
require any linearization or additional approximation. 
 The nonhydrostatic dynamics are introduced 
through an add–on module.  The separation of the 
nonhydrostatic contributions shows in a transparent way 
where, how, and to what extent relaxing the hydrostatic 
approximation affects the familiar hydrostatic equations.  
The nonhydrostatic module can be turned on and off, so 
that the same model can be run in both hydrostatic and 
nonhydrostatic modes.  This allows for easy comparison 
of hydrostatic and nonhydrostatic solutions of an 
otherwise identical model.  This feature also allows the 
model to be run in the hydrostatic mode at lower 
resolutions with no extra cost.  This is an advantage in 
the case of models designed for a wide range of 
horizontal resolutions, and in particular for unified global 
and regional forecasting systems. 

 
Fig. 20.  Time average over 36-48 hours of the NMM-B 
spectra (blue diamonds) at 300 hPa over Atlantic 
Ocean.  The –3 (pink squares) and –5/3 (yellow 
triangles) slopes are shown for comparison.  Run 
starting from 12 UTC, 09/07/2003, GFS data, 15 km, 32 
levels resolution.  No lateral diffusion, weak mass 
divergence damping. 

 At very high resolutions, a two-dimensional version 
of the model successfully reproduced the classical 
nonhydrostatic solutions (Janjic et al., 2001).  Although 
such resolutions will not be affordable in NWP 
applications in the near future, it was necessary to pass 
these tests in order to demonstrate the soundness of 
the formulation. 

 
atmospheric spectra, even at a rather modest resolution 
of 15 km, and even without forcing by the mountains.  
Whether the energy at the small-scale part of the 
spectrum comes from legitimate physical sources, or 
from computational noise due to model imperfections is 
another issue that requires further investigation.  In 
other words, there is still no guarantee that the model 
produced –5/3 spectrum is generated by the same 
mechanisms as the Nastrom and Gage –5/3 spectrum 
observed in nature.  If it turns out that the model 
produced spectrum in short-range integrations is 
physically justified, the shape of the spectrum produced 
by the model could perhaps be used as guidance for 
more precise tuning of the model’s dissipation 
parameters. 

 The extra computational cost due to the 
nonhydrostatic extension is on the order of 20% of the 
cost of the hydrostatic dynamics.  The relatively low cost 
of the nonhydrostatic dynamics justifies the application 
of the nonhydrostatic model even at medium 
resolutions.  Compared to the hydrostatic version of the 
model, no additional computational boundary conditions 
at the top have been needed in real data runs at a wide 
range of horizontal resolutions. 
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Fig. 21.  Time evolution of the WRF-NMM spectra (blue lines) at 300 hPa in the Eastern Domain.  Run starting from 
18 UTC, 09/17/2003 (Isabel), Eta data, 8 km, 60 levels resolution.  The –3 (pink lines) and –5/3 (yellow lines) slopes 
are shown for comparison.  No lateral diffusion, weak mass divergence damping.  Plots every 6 hours, top to bottom, 
6-24 left column, 30-48 right column. 
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Fig. 22.  Time average over 36-48 hours of the WRF-
NMM spectra (blue diamonds) at 300 hPa in the Eastern 
Domain.  The –3 (pink squares) and –5/3 (yellow 
triangles) slopes are shown for comparison.  Run 
starting from 18 UTC, 09/17/2003 (Isabel), Eta data, 8 
km, 60 levels resolution.  No lateral diffusion, weak 
mass divergence damping. 
 
 The NMM became operational at NCEP in July of 
2002 and has demonstrated remarkable skill (Black et 
al., 2002).  In real data runs, it does not require 
additional computational boundary conditions at the top. 
 Despite the application of sophisticated numerical 
methods, the computational efficiency of the model has 
been very high, substantially higher than the 
computational efficiency of most established 
nonhydrostatic models.  Moreover, further significant 
improvement in the computational efficiency of the 
model is possible.  This will allow for further increases in 
resolution and the application of more sophisticated 
physical parameterizations.  The model has been highly 
reliable and there have been no failures since 
operations started. 
 In terms of performance at synoptic scales, the 
model has generally been highly competitive with 
mature high-resolution NWP models, despite the fact 
that it has been handicapped by inconsistent initial and 
boundary conditions, a relatively small integration 

domain, and almost no retuning of the physical 
parameterizations.  Moreover, it has demonstrated 
an ability to add value to the forecasts produced by the 
driving model [the Meso (Eta)]. 
 More significant differences between the NMM and 
the NCEP hydrostatic high resolution Meso (Eta) model 
can be seen at smaller scales.  The differences are 
particularly striking in mesoscale vertical structures 
developed by the two models. 
 Although the initial results have been very 
encouraging, further efforts are needed in order to 
develop the full potential of the model.  This applies 
primarily to retuning the physical parameterizations that 
are currently tuned for the Eta model.  Fast progress in 
this respect have been hampered by a lack of resources 
at NCEP that have been further aggravated by problems 
associated with the migration to new computers. 
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