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IMPROVING FORECAST VERIFICATION THROUGH NETWORK DESIGN

Eric Gilleland∗

National Center for Atmospheric Research

1 INTRODUCTION

Methods are explored here for optimizing the net-
work design for verification of forecasts of cloud ceil-
ing height and visibility. Meteorological Aeronautical
Report (METAR) data from surface stations are used
for verification of these forecasts and the placement of
these stations may affect the results of the verification.
For instance, verification analyses in areas with densely
located METAR stations may penalize poor forecasts–
that cover several grid points in a region–several times
for essentially the same mistake. It is also possible for
forecasts to not be penalized enough in areas where
METAR stations are only sparsely located. This sec-
ond problem is not as serious because the forecasts
are generally considered more important where METAR
stations are abundant.

Although the motivation for this work is in forecast
verification, actual verification techniques will not be
discussed here. For more information on verification
analyses please see Jolliffe (2003) or Wilks (1995).
Here, the concern will be focused on spatial statistical
methods. Theoretical development of spatial statisti-
cal methods can be found in Cressie (1993) or Stein
(1999). A more basic knowledge can be found in Reich
(2003) or Isaaks (1990).

Various spatial methods are explored for optimizing
the network design. Section 3 illustrates these meth-
ods. Often, spatial sampling design is used for sampling
points from a grid of locations and being able to re-
arrange the design locations (see, for example, Angulo
(2003) or Müller (2003)). Here, however, points are
not from a grid nor is it possible to move stations; it
is desired only to thin an existing network. Standard
spatial techniques are not appropriate for these data
because even though they can be viewed as continu-
ous, both are actually too discrete for successfull in-
terpolation. Categorical kriging is more appropriate for
these data. However, such techniques have not been
used for this type of analysis and so using categorical
kriging for finding an optimal network design, partic-
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ularly for spatiotemporal data, is a matter for further
research and is beyond the scope of this paper.

The covariance function used for categorical kriging,
however, has a useful interpretation for finding an opti-
mal network design. Therefore, a coverage design was
employed using this covariance as a dissimilarity met-
ric. Results showed that the network can be thinned
for visibility data, but for ceiling height such thinning
based on this analysis is not appropriate.

2 DATASETS

Data used here are hourly data collected from METAR
stations from January 1 to January 30, 2003. For this
analysis a subset of 48 stations in Northern California
and parts of Nevada as shown in Figure 1 are used.
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Figure 1: METAR station locations used for explor-
ing network design issues for verification of cloud
ceiling height and visibility.

For each of these 48 locations, there are 719 hourly
time points yielding a total of 34, 512 observations. For
cloud ceiling height there are a total of 3, 836 missing
data points and for visibility there are 3, 844. Both of



Table 1: Designations for Low Instrument Flight
Rules (LIFR), Instrument Flight Rules (IFR)
Marginal Visual Flight Rules (MVFR), and Visual
Flight Rules (VFR).
Flight rules Cloud ceiling height Visibility

LIFR < 500 feet < 1 mile
IFR < 1000 feet < 3 miles

MVFR < 3000 feet < 5 miles
VFR > 3000 feet > 5 miles

these datasets are theoretically continuous. That is,
cloud ceiling height is the distance from the ground to
the lowest layer of cloud and visibility is the distance
one can see horizontally. However, the data are mea-
sured and recorded somewhat discretely as can be seen
in Figures 2 and 3.
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Figure 2: Example scatter plot of ceiling height data
for one station.

Such discreteness in the data suggests the use of
categories. Perhaps the most natural categories to use
are the flight rules shown in Table 1.

3 STATISTICAL ANALYSES

For network design it is of interest to know whether
information on a variable of interest from a particu-
lar group of sites is sufficient for a particular area or
not. To learn this information it is generally necessary
to perform some type of interpolation using a subset
of the spatially located sites to determine if they pre-
dict well onto the entire set of sites or not. The stan-
dard statistical tools for this analysis involve finding the
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Figure 3: Example scatter plot of visibility data for
one station.

best linear ubiased estimator using a covariance func-
tion that accounts for spatial correlations; a technique
widely known as kriging. In this case, however, kriging
is not appropriate because it requires the data to follow
a Gaussian distribution and due to the discrete nature
of these data they are certainly not Gaussian.

As with standard linear regression, however, it is
possible to generalize the technique of kriging to
non-Gaussian data. In particular, it is possible to use
what Reich (2003) refers to as categorical kriging.
First, denote the probability that a point xs belongs
to category i by

pi(xs) =prob{xs ∈ category i}, i = 1, . . . , N

where N is the number of categories. It is de-
sired to find the estimate of pi(xs), call it p̂i(xs),
for each category and then choose the category with
the highest estimated “probability” as the value at
location xs subject to the constraint

N∑
i=1

p̂i(xs) = 1 (1)

for all locations, xs.
The general form of the estimate, p̂i(xs), is similar

to the usual kriging estimate. Namely,

p̂i(xs) =
∑
α

λαiI(xα ∈ i) (2)

where I(xα ∈ i) is 1 if the value at location xα falls in
category i and zero otherwise. To verify the constraint



(1) it is sufficient to assume that the weights, λ, are
constant for all categories (i.e. λα1 = λα2 = . . . =
λαN = λα) and to impose the unbiasedness condition∑

λα = 1 (see Journel (1983)).
Using a geostatistical approach for finding the new

estimator
p̂i(xs) =

∑
α

λαI(xα ∈ i) (3)

requires the use of a single covariance for all categories,
which can be defined as the probability of two points
separated by a vector, h, belonging to the same cate-
gory (see Soares (1992)). Specifically, define

C(h) = E{
∑

i

(I(xs ∈ i) · I(xs + h ∈ i))} (4)

It is desired to find the estimator that minimizes
the expected sum of the sqaured differences between
estimated and real values. That is, it is desired to
minimize the quantity∑

i

E{I(x ∈ i)− p̂i(x)}2 (5)

The minimization of (5) does not imply that the error
for each category is minimized. However, it is desired
to find a consistent estimator for the entire set (see
Soares (1992)).

Minimizing (5) subject to the constraint that∑
α λα = 1 leads to the classical kriging system∑

α

λαC(xα,xβ) + µ = C(xβ ,x) (6)

where C(x,y) = C(h) and h is the distance vector
between the points x and y. The resulting weights
ensure that the constraint equation (1) is satisfied and
that (5) is minimized. See Soares (1992) for more
details on this type of kriging.

As stated earlier, the general practice is to obtain the
estimates, p̂i(x), for each location, x, and use as the
predicted category for a given location that category
whose associated estimate is the highest. Assuming a
multinomial distribution, an estimate of the standard
error of prediction associated with the probability of
classifying a location in a given category is given by

σ(p̂i(x)) =
√

p̂i(xs)(1− p̂i(xs))/(n− 1) (7)

where n is the number of nearest neighbors used in the
kriging (see Reich (2003)).

The standard errors given in (7) have some draw-
backs as far as deciding on an optimal network design.
Particularly, it is possible to select a particular category,
say i, for a site, xs, with p̂i(xs) = 1 even if the true
category is not i. Despite this, the standard error of

prediction is zero; implying that the prediction cannot
be wrong even though it actually is wrong.

The above methods provide a way to employ infor-
mation from surrounding sites to predict the category
for another site. Nevertheless, it is not clear how to use
this information to determine which design is “best”.
These methods have previously been used more to de-
termine, for example, soil composition. In that setting
zones of uncertainty can be established to give the re-
searcher an idea of what soil type is most likely to be
present in a given area. In this setting, one would need
to find the zones of uncertainty for each time point;
in this case 719 of them making it difficult to use as
a measure of “best” design. The covariance function
obtained using these methods may be useful as a mea-
sure of similarity (or dissimilarity) in a coverage design
(see Nychka (1998) or Johnson (1990)).

Specifically, for a given set of candidate points, C,
denote the set of n design points as D where D ⊂ C,
then an overall average criterion is an Lq average of
cover points in the design region. Namely,

(
∑
x′∈C

(
∑
x∈D

d(x,x′)p)q/p)1/q (8)

where p < 0, q > 0 are parameters and d(x,x′) is
a distance metric or in the present case a dissimilar-
ity metric. That is, if the covariance function (4) is
thought of as a correlation matrix (all values are be-
tween zero and one) then a dissimilarity metric would
be d(x,x′) = 1 − ρ(x,x′), where ρ(x,x′) = C(h)
from (4) and h is the distance vector between x and
x′. Large negative values of p tend to yield designs that
are more spread out and as q −→ ∞ and p −→ −∞
the result gives a classic minimax design.

Criterion (8) is minimized over several space-filling
designs of a given size to obtain a “coverage design”
from among the class of space-filling designs. It is
possible to fix points in the design so that they cannot
be swapped out. Generally, the initial design is chosen
at random and choice of starting design may affect
the outcome. Criterion (8) is guaranteed to converge
(Nychka (1998) or Johnson (1990)).

Note that this method gives a subset of a prede-
termined size, n, that is “best” based on the dissim-
ilarity metric, which in this case is the probability of
two points separated by a distance vector, h, belong-
ing to the same class; it does not determine the “best”
size, n, of the network. To attempt to find the “best”
size, one possibility is to use the coverage design algo-
rithm to find several designs of varying sizes and then
use generalized cross-validation (GCV) with categorical
kriging to help decide on the design size. This method
is still somewhat crude because the larger the design
size, the smaller the GCV will be, but it can give some



idea of how each design size performs.

4 RESULTS

The analyses described in the above section allow
for an anisotropic covariance function; meaning that
the covariance may depend on direction as well as
distance. In the following analyses all covariances are
assumed to be isotropic; although it may be of interest
to look at the case of anisotropy. Additionally, the
covariances (probability that two stations separated
by a distance vector h are in the same class) are
calculated using the temporal component of the data.
So that (4) becomes

C(h) =

Et{E{
∑

i

(I(xs ∈ i; t) · I(xs + h ∈ i; t))}} (9)

where Et is the expectation over time.
Figures 4 and 5 show the scatter plots for the em-

pirical covariance functions (9) for cloud ceiling height
and visibility respectively. In each case, the plots ap-
pear to be quite scattered and suggest that it may be
inappropriate to thin these networks. Nevertheless, in
the case of visibility, a mixture of exponential functions
is fit to these correlations in order to apply the coverage
design technique discussed in section 3.
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Figure 4: Scatter plot of distance and probability of
two classes separated by given distance being in the
same class (covariance) for cloud ceiling height data.

Using the covariance fit shown in Figure 5 for the
visibility data, a coverage design is found for 20 design
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Figure 5: Scatter plot of distance and probabil-
ity of two classes separated by given distance being
in the same class (covariance) for visibility data.
Red line indicates the fitted mixture of exponen-
tial functions to these data. Specifically, C(h) =
0.61 exp(−h/12.15) + (1− 0.61) exp(−h/5325.39).

points out of the total 48 METAR stations. Values
of p = −20 and q = 20 are used in order to get a
reasonably spread out design that is close to a mini-
max design. The resulting design is shown in Figure 6.
The R software package fields (Nychka (2003)) is used
to find the coverage design; specifically the function
cover.design.

Bootstrapping is used to obtain some kind of infer-
ence about the parameters for the covariance shown
in Figure 5. Values for the mixing parameter are very
tight with a standard deviation of only 0.011 and the
values range from about 0.57 to 0.62 indicating that
the short range exponential is more important than the
long range one. For the short range parameter the val-
ues are also very tight with a standard deviation of
about 1.1 miles and a range of about 9 miles to about
15 miles. The long range parameter varies widely, but
its minimum value is roughly 1200 miles indicating that
this term is nearly zero across all simulations. These
results suggest that a single exponential is adequate.
However, the mixture has the nice property of cap-
turing the short range correlation much better than a
single exponential.

The map from Figure 1 suggests a smaller region
should be studied independently. Specifically, the nine
stations on the southern edge of the San Francisco
Bay should be considered separately. Figures 7 and 8
show the empirical covariances (9), but restricted to
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Figure 6: Coverage design results (circled) for vis-
ibility data using a design of size 20 out of 48
candidate stations using dissimilarity metric 1 −
ρ(h) where ρ(h) = 0.61 exp(−h/12.15) + (1 −
0.61) exp(−h/5325.39).
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Figure 7: Scatter plot of distance and probability of
two classes separated by given distance being in the
same class (covariance) for subset of cloud ceiling
height data.
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Figure 8: Scatter plot of distance and probability
of two classes separated by given distance being in
the same class (covariance) for subset of visibility
data. Red line indicates the fitted mixture of expo-
nential functions to these data. Specifically, C(h) =
0.19 exp(−h/8.47) + (1− 0.19) exp(−h/2603.90).

this small region for each set of data. In the case
of cloud ceiling height, the results do not change as
the probabilities are still quite scattered from less than
50% to nearly 1 for distances less than 5 miles. On the
other hand, the empirical covariance for the visibility
data looks very promising with high probabilities for all
distances, but still decreasing with distance. In fact,
the probabilities do not drop below 0.8 until about 15
miles. There appears to be much more structure here.
The resulting design for this subset is shown in Figure 9.

Bootstrapping results for the covariance parameters
shown in Figure 9 for the Bay Area subset are similar
to the results found for the entire 48 METAR stations,
but the long range parameter appears to be more im-
portant here. The mixing parameter ranges from 0.33
to 0.52 with a standard deviation of about 0.04 sug-
gesting that the two exponential components are more
equally necessary than before. The short range param-
eter ranged from about 2 miles to about 6 miles with
a standard deviation of about 0.85 miles and the long
range parameter ranged from about 60 miles to about
1400 miles and was more varied than either of the other
two parameters with a standard deviation of about 200
miles.

Given the unique structure of this particular subset
of data, it is perhaps a good idea to fix this smaller
design when doing the analysis on the entire network.
Also, it may be a good idea to fix certain locations
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visibility data using a design of size 3 out of 9
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Figure 10: Coverage design results (circled) for a
design of size 20 (fixing some stations due to eleva-
tion differences and from finding a “best” design for
a subset of stations near the San Francisco bay) out
of 48 candidate stations. Elevations are shown in
color.

based on elevation differences. Figure 10 shows the
results of performing the same coverage design anal-
ysis as in Figure 6, but with the three design points
from Figure 9 fixed in the design along with five points
where sharp changes in elevation occur. The coverage
design algorithm was run several times with different
randomly chosen starting designs to ensure that the
choice of starting design would not affect the result.
The generalized cross-validation value from categorical
kriging obtained for this design is about 0.69, which is
about 0.25 higher than the “best” design using 25 sta-
tions and nearly 0.3 lower than using only 15 stations.

5 DISCUSSION

Although the coverage design finds the best design for
a particular design size, it does not find the “best”
design size. Here, a “best” size design is found by
running the coverage design analysis for several design
sizes and then a cross validation analysis using the cat-
egorical kriging described in section 3 is used to obtain
a heuristic idea of a good design size. As with all cross
validation analyses, the value will increase with fewer
stations and it is not clear how to decide how large
of a value is too large. Inspection of plots of visibility
values for several time points suggests that the final
design (Figure 10) appears to be quite reasonable.

Results look quite good for visibility data, but not
for cloud ceiling height where the empirical covariances
suggested that all of the stations are necessary for ver-
ification. This may be due to isolated thunderstorms
that may cover one station, but not other stations only
a few miles away. In this case, network thinning is in-
deed not appropriate for forecast verification. However,
the sensitivity of many ceilometers makes it possible for
a single station to read a low ceiling height if, for ex-
ample, something other than a cloud such as birds or
aircraft were to fly over at the right time. In this case,
network thinning may be reasonable. It may be possi-
ble to determine which is the case by using other data
sources, such as satellite data, to determine if there
are isolated thunderstorms or not. However, while the
presence of clouds over stations may be detected by
a satellite, the actual ceiling height could still differ
substantially from one station to another.
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