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1. Introduction
The main goal of our project is to develop and test advanced diagnostic methods for the evaluation
of quantitative precipitation forecasts. To that end, an “object-oriented” strategy has been adopted.
Rather than score the precipitation field on a gridpoint-by-gridpoint basis, both the forecast and ob-
served fields are resolved into objects (or regions of interest), and forecast and observed objects are then
compared. The procedure is outlined in this section and a step-by-step example is presented in Sec 2.

The setup is as follows. We have a two-dimensional grid of points, say
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The parameters % and

.
define the filter. Usually R is taken to be anywhere from a few to a dozen or

so grid-units and % is chosen so that the volume under the graph of
�

is equal to 1, i.e.,
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A “circular” filter such as defined here is by no means the only possible choice. We have experi-

mented with some other filters and have found the end results do not change appreciably with these
more complicated filters. Thus we go with the simple filter above.

The second step is to threshold the convolved field. Why don’t we just threshold the original field?
Remember our goal is to resolve objects in the original field. As is shown in the example in Sec. 2,
thresholding data that has high spatial frequncy components (e.g. precipitation data) will not produce
representative objects. The convolution process gets around that difficulty. It can be thought of as a
simple low-pass spatial filter that attenuates high spatial frequencies in the data. Any points in the
grid where the value of the convolved field is greater than the threshold are set to one—any points
below the threshold are set to zero. This gives a zero/one field that can be used as a mask.

Finally, the mask field is applied to the original data field, preserving data that are inside detected
objects and zeroing out the rest of the field.

The rest of this paper is devoted to illustrating and extending these ideas. Section 2 gives an
example using real-world precipitation forecast data. Sections 3 and 4 discuss what to do with objects
once you’ve got them. Section 5 gives a summary and indication of future work. References are given
in Section 6.

2. Example
All this should be made clearer by an example. We will look at the various stages of this process as
applied to a real data field. CONUS WRF precipitation data from the summer of 2001 will be used.�



Fig. 1   Raw Precipitation Field

Fig. 2   Convolved Precipitation Field

In Fig. 1 we show a raw precipitation field, in both a 3-D and a 2-D rendering. The various steps
involved in the process are easier to see in a 3-D view. (Note: for clarity, state outlines have been
left out.) Note that the original data are so uneven that a simple thresholding of the raw data at
any intermediate value would not result in a small number of representative objects. It has been our
experience that most 2-D plots of scalar fields on a grid fail to give the viewer an appreciation of just
how “raw” the raw data often is.

The next step is convolving. The particular parameters used for the convolving function aren’t
important for this example. As explained earlier, this step is a particular form of low-pass filtering.
High spatial frequencies are greatly attenuated while low spatial frequencies survive relatively intact.
Fig. 2 shows the result. �



Fig. 3   Zero/One Mask Field

Fig. 4   Original Field Resolved into Objects

If this convolved field is thresholded at some intermediate value, a relatively small number of
larger connected shapes will result—rather than the large number of smaller disconnected shapes
which would have resulted if the raw field were thresholded. If we now perform this thresholding, and
replace all grid values that were above the threshold by one, and all values below the threshold by zero,
a zero/one field is obtained that can be used as a mask for the original data. The result is shown in
Fig. 3. It’s important to understand that the convolved or “filtered” data are used for detecting object
boundaries and for nothing else. Once the objects have been resolved, we then apply this mask field
gridpoint-by-gridpoint to the original data—in other words, at every gridpoint where the mask field is
zero, the original data field is set to zero. At every grid point where the mask field is one, the original
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data field is left unchanged. We then have our original data field resolved into objects and the rest of
the data field outside these regions of interest has been zeroed out. See Fig. 4.

At this point a number of things can be done. Distributions of data values inside objects can be
calculated, and various object attributes such as centroid, axis angle, moments and curvature can be
calculated. In addition, the objects can be replaced by fitted shapes with similar attributes chosen to
represent the objects in simplified or schematic form.

3. Shape Fitting
It is often desirable to replace an object by something simpler—something incorporating the important
characteristics of the object but (for many purposes) easier to work with. This is analagous to summa-
rizing a probability distribution by giving its mean and first few central moments. We distill pertinent
object characteristics into several descriptive attributes, and consider simpler geometric shapes that
have the same or similar attributes. Several such schematic representations are used.

First, the centroid. This is the geometric center of the object, and as such it provides an easy way
to assign simple locations to extended shapes. See the upper left illustration in Fig. 5.

Let the object be represented by
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is the area (expressed as number of grid squares) of the object. This should strongly remind
the reader of the mean of a two-dimensional probability distribution. We shall be needing higher
moments of this “distribution” in a minute.

Next, the axis. See the upper middle illustration in Fig. 5 for an example. Note that this is not
an axis of symmetry—indeed few objects will even have an axis of symmetry. Neither is it the usual
least-squares approach to fitting a line to a set of data points., It is not, however, an entirely new
approach—see the book by Ritter and Wilson in the references.

The axis angle is obtained from a two-step procedure: First, the coordinate system is translated
so that the centroid is at the origin. If the original coordinate system is
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is rotated about its origin (giving new coordinates
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new origin is maximized. The
;
-axis thus obtained is our shape axis. Note that this axis neccesarily

goes through the object centroid.

Bandaids. A bandaid shape is a rectangle with semi-circles on a pair of opposite sides. See the
upper-right and lower-left illustrations in Fig. 5 for examples. While the centroid and axis are simply
object attributes, here we are really fitting a shape to an object. How is this fitting to be done?

First we require the object and bandaid to have the same centroid and axis. It would be natural
to next require that the bandaid have the same second moments as the object, but this turns out to be
too many conditions to satisfy. Instead, we regard the ratio of second moments along the axis to second
moments orthogonal to the axis as a kind of “aspect ratio” for the object, and require the bandaid to
have this same aspect ratio.

This determines the position, orientation, and aspect ratio for the bandaid. What about its overall
size? Two criteria can be used. One is to require the bandaid to enclose the same area ( i.e. number of
grid squares). The other is to require the smallest size that entirely encloses the object. Both of these
approaches can be seen in Fig. 5.






Fig. 5

Bandaids aren’t the only simple geometrical shapes that can be fitted to an object. We can also use
ellipses. Here the same criteria for fitting are used. We require that the fitted ellipse have the same
centroid, axis and aspect ratio as the given object. And again, one can either have an equal-area ellipse
or an enclosing ellipse (though only one of these is shown in Fig. 5).

Convex hull. A convex set is one that has the property that whenever two points are in the set,
the straight line segment joining the two points lies entirely in the set. The convex hull of a set is the
smallest convex set that contains the given set.

The convex hull uses none of the previously mentioned shape attributes. Also, it is often the case
that quite a few points are required in the closed polyline that gives the hull, so the convex hull is not
really a very economical representation of an object. However, it does have a sort of intuitive appeal.
Again, see Fig. 5 for an illustration.

4. Matching Shapes
Rules for matching forecast and observed objects can incorporate several criteria. First and simplest is
the vector difference between their centroids. Treating this separation as a vector instead of a simple
scalar distance is useful because the vector incorporates information on direction as well. Knowing
that forecasts tend to be incorrectly placed in a certian direction (e.g. northeast) can be very useful to
modelers and algorithm developers.

Also, axis information can be used. Forecast objects that have different axis orientations than
observed objects are another category of forecast error.

In general, the greater the number of forecast object attributes that match (or nearly so) observed
object attributes, the better the forecast can be said to be. We thus report the quality of a forecast by
giving summaries of object attribute differences.

Object matching can be done as well on only a single field, rather than between a forecast and
observed field. Two separate objects that have similar attributes, e.g. small separation and similar
axes, can be considered to be parts of the same feature. None of the object attributes discussed in Sec. 3
require that the given object be in one connected piece. Notice that the figure of the walking man in
our oft-referred-to Fig. 5 is in two pieces. Centroid, axis, and other attributes can then be recalculated
for this composite object, if desired.
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5. Conclusions & Further Work
This paper has reported our attempts to develop forecast verification methods that move beyond tradi-
tional gridpoint-by-gridpoint techniques. Objects can be detected in data fields by a simple convolution-
filter based approach. Simple geometric shapes can be fitted to objects to represent them in a simplified
or schematic fashion. Objects can be matched or merged according to closeness of attributes. Forecast
quality can be expressed by giving summary statistics of object attribute differences.

Future work will expand and extend these methods. Object matching, for example, can be done in
the time domain as well as spatially, giving a method for tracking individual objects over their lifetime.
Time tracking of objects is made difficult however, by the fact that objects can split into pieces or merge.

Improved methods of object matching will be pursued, hopefully leading to more sophisticated rule
sets, perhaps including object histories. Object attributes that are meaningful for forecast developers
and other users will be identified.
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