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1. INTRODUCTION
In the last three years, the National Center for Atmospheric 

Research (NCAR) and the Army Test and Evaluation Command 
(ATEC) have been developing a multi-scale (with grid sizes of 
0.5 - 45 km), rapidly cycling (at time intervals of 1 - 12 hours), 
real-time four-dimensional data assimilation and forecasting 
(RTFDDA) system. By August, 2003, RTFDDA systems were 
customized and deployed to five Army test ranges, and to seven 
other regions to support specific missions of three other US gov-
ernment agencies. A Newtonian-relaxation-based "station-nudg-
ing" approach, by which all observations that are available in 
real-time are incorporated into a continuously running MM5 
model, is employed to accomplish four-dimensional data assimi-
lation. The nudging-based data assimilation weights each obser-
vation uniquely according to the observation time and location, 
and thus allows ingest of conventional and unconventional 
observations that are available at regular and irregular times 
intervals. The data sources incorporated include the traditional 
hourly surface (METAR, ship, buoy and special) reports and 
twice-daily upper-air rawinsondes. Also used are high-fre-
quency measurements from various mesonets and special field 
experiments; wind profiler data from NOAA/FSL NPN profilers 
and CAP-Cooperative Agency Profilers; NOAA/NESDIS 
hourly GOES winds derived from IR, visible and water-vapor 
images; aircraft reports (ACARS/AMDAR) processed and dis-
seminated by NOAA/FSL; and data from other non-conven-
tional sources.

The "station-nudging" approach appears to alleviate some 
of the problems in mesoscale data assimilation and prediction. 
Another remaining problem is that data from different platforms 
have different instrument, sampling and processing errors and 
these errors may vary in time and space depending on the 
according to weather regime, instrument sitting, and geographic 
effect. In addition, when observations are analyzed onto a data-
assimilation-model grid, representativeness errors appear, which 
can significantly affect the accuracy of analyses and forecasts. 
How to account for the overall effect of these errors (referred as 
to total observation error) is a critical problem in data assimila-
tion. This is especially challenging because On the other hand, 
irregular time and space distributions of observations from the 

non-conventional measuring platforms can make traditional 
data quality control approaches, such as buddy-checks and 
dynamic consistency check (as reviewed in next section), 
very complicated and computationally so expensive that it 
will hinder real-time usage. This will become particularly 
true because data volumes from these platform are increasing 
rapidly.

In this paper, a simple and efficient data quality-control 
(QC) procedure is described. The new QC module can 
grossly estimate the error of an observation, and thus is able 
to assign a quality level to individual observations. It is dem-
onstrated that the RTFDDA data assimilation and forecasts 
are improved by using the data-quality information, obtained 
from the QC, procedure to weight each observation uniquely 
with confidence levels during the assimilation. 

2. BACKGROUND REVIEW

Much progress in numerical weather prediction (NWP) 
on all scales have been achieved in the last three decades. 
Modern operational and research NWP models run with high 
resolution, complete dynamics and sophisticated physics 
parameterizations. Advanced filter schemes are employed to 
produce model initial conditions, using abundant data. Short-
term (0 - 12 hour) forecasts are often used as the background 
for data analyses. The advances in the modeling technology 
and the computing capacity, for rapid forecast-analysis-
cycling, significantly improve the model-background accu-
racy and hence the analyses based on it. Meanwhile, accurate 
short-term forecasts can be used to monitor the observation 
quality. Hollingsworth et al. (1986) point out that the 6 - 12 
hour forecasts used as background for the operational analy-
ses at ECMWF have an accuracy comparable to that of the 
radiosonde observation, for a study period of March and 
April 1984. With case studies, they showed that the ECMWF 
data analyses and 6 - 12 hour forecasts can be used to define 
bad radiosonde observations. Today's NWP forecasts are 
even more accurate. For example, 0 - 3 hour nowcasts are 
available in realtime from the rapidly cycling NCAR/ATEC 
RTFDDA system. Such nowcasts provide a superior basis for 
monitoring and quantifying observation errors.

Before introducing the new QC scheme, we briefly 
review observation error sources and the heuristic data QC 
approaches used in NWP. Essentially, two kinds of observa-
tion errors exist: instrument errors and representativeness (or 
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sampling) errors. The instrument error is caused by sensor 
damage/calibration, uncertainties in variable-retrieving 
schemes, and human/electronic processing. These errors can 
either be systematic (bias error) or random (random error) or 
fatal error (nonsense observations). The representativeness 
error reflects the degree to which an observation represents the 
volume-average value. Representativeness errors are normally 
unbiased, and their magnitudes may depend on the volume 
size, the sensor’s time average, the volume size which one 
wants the observation to represent, and the weather state. All 
measurements are subject to these errors, and we lack enough 
information to accurate each of these errors. Although most of 
these error sources seem to be platform-dependent, as assumed 
by most NWP centers, observation errors from the same plat-
form type may vary with weather regimes and instrument sit-
ting. 

At most research and operational NWP centers, two steps 
are involved in data analysis/assimilation: observations are 
firstly quality-controlled, and then they are used in statistical 
analysis. At the data QC stage, observations which do not sat-
isfy the specified criteria in one or more checks are considered 
as "bad" observations and removed. Then, at the analysis stage, 
statistics of platform-dependent observation errors and models 
are used to define the relative weight of observations and back-
ground. Most NWP centers employ the following approaches 
to define "bad" observations: 1) validity and static consistency 
checks to define "impossible observations"; 2) "error-toler-
ance" checks by which observations are compared to 6 - 12 
hour model forecasts, 3) "buddy-checks" where "neighboring" 
observations are compared with each other; 4) time-consis-
tency check by which temporal abnormalities are found; and 5) 
dynamic/physical consistency checks where observations are 
examined for their dynamic/physical consistency with their 
environment,

Although the traditional data QC procedure, and the sta-
tistical-error-based data filters, work satisfactorily in NWP 
practice, it is obvious that the "sharp-line" drawn between 
"bad" and "good" in the QC schemes is arbitrary. For example, 
given two temperature observations: one is 0.1 C above and the 
other is 0.1 C below the “error-max” cut-off line. It is very 
arbitrary to drop the one that is 0.1 C over the error-max and to 
keep the other one that is 0.1 C under the error-max. It is quite 
possible that a "bad" observation that fails the QC checks and 
is dropped out, is a "good" observation. Furthermore, typical 
QC schemes can not properly deal with the observation errors 
that vary in response to weather regimes and geographical 
effects, even for the observations made from the same measur-
ing platforms. This is particularly true when applying these 
schemes in mesoscale modeling systems, such as the NCAR/

ATEC RTFDDA system, since on the mesoscales observations 
are relatively sparse and weather systems can change greatly 
in time and space. Also, the diverse non-conventional observa-
tions used may have very different errors. Therefore, it is nec-
essary to refine the QC schemes in order to better quantify and 
use the observation errors. 

Statistical and variational analysis, 3DPAS and 3DVAR, 
are the most common analysis schemes employed for data 
assimilation and initialization of models in the modern opera-
tional NWP center. These schemes heavily rely on the errors 
of observations and model. The observation and model errors 
are normally estimated based on historical observations and 
model forecasts. In these schemes, the historical statistical 
background errors are assumed to be the error of the individual 
background during each analysis, and similarly, the historical 
statistical observation error is used to approximate the error of 
individual observations. These assumptions are faulty, espe-
cially when applied to mesoscale modeling. In fact, the con-
cept "error of the day" relative to backgrounds for data 
assimilation was raised more than a decade ago. Basically, the 
"error of the day" concept says that the true (or the best esti-
mate of) error of the current background should be used, and 
that the statistical errors obtained based on historical model 
forecasts are not sufficient. Similarly, we point out that an 
accurate data assimilation system also needs the "error of the 
day" for observations - the error of each individual observa-
tion. Like the background errors, observation errors for a given 
set of observations will always differ from the historical statis-
tics error. In addition, since the representativeness error of 
observations is a function of the size of the analysis grid box 
and the weather, the representativeness error is an important 
part of the "error of the day" of observations, which can not be 
properly addressed by the traditional data QC and analysis 
schemes.

Defining the "error of the day" for either the background 
or the observations is a very challenging problem. Although 
there are many research activities related to using the ensem-
ble prediction approach to describe the "error of the day" for 
backgrounds, such techniques have  not been used in opera-
tions. The "sharp cut-ff" method used to remove "bad" data in 
the traditional data QC schemes appears to inconsistent with 
the concept of the "error of the day" for observations. 

In the following sections we describe a new data QC 
scheme developed in conjunction with the Newtonian-relax-
ation-based rapidly cycling operational NCAR/ATEC 
RTFDDA system. The scheme is constructed to examine and 
estimate the relative quality of each individual observation. 
We will also demonstrate how to use this "error of the day" 
information in the station-nudging-based data assimilation, 



and evaluate its impact on the RTFDDA analyses and forecasts 
using case studies. 

3. CONCEPT AND DESIGN OF A NEW QC SCHEME

An NWP system that “cold-starts” from three-dimensional 
analyses has forecasts that experience initial dynamic and 
physical adjustments due to the inconsistencies between the 
analyses and the model. This is commonly referred to as “spin-
up problem”. In contrast, a FDDA-based analysis and forecast 
system suffers from the “spin-up problem” because the 4-D 
process fits the model to observations, and maintains the model 
balance at the same time. In an FDDA and forecast system, the 
shorter the forecast, the more accurate the forecast. Analyses are 
most accurate, 1-h forecast is better than the 2-h, the 2-h is 
better than the 3-h and so on. The NCAR/ATEC RTFDDA 
system is one such system that produces, in real-time, 4-D 
dynamically and physically consistent analyses and forecasts. 
To illustrate this property, Fig. 1 presents an example of the 
verification of the RTFDDA system running at the Army’s 
Aberdeen Proving Ground during August, 2003. It can be seen 
that the analysis and short-term forecast errors are 
comparatively small, and the forecast accuracy gradually 
decreases with forecast length. The RTFDDA 0 - 3 hour 
forecasts provide a fairly accurate background that can be used 
to examine the overall error (referred to as total error, hereafter) 
of real-time observations and model backgrounds, in the sense 
of "error of the day". (note: 0h forecasts are FDDA analyses). 
Furthermore, by comparing the observation-background 
differences with the statistics of the model and observation 
errors it might be possible to scale the quality of each 
observation. The new RTFDDA QC procedure was designed 
according to this concept. 

Firstly, let us assume that the RTFDDA analysis and 1 - 3 
hour forecasts are perfect (i.e., they represent the true 
atmosphere state -- an assumption that can never be true, and 
will be discussed later). Then, the distances between the 
observation vectors and model state vectors will simply 
represent the observation errors. In other words, given an 
observation in the model domain and the model integration 
window, we can interpolate/derive the true state from the model 
at the observation time and location. The difference between the 
observation and the model will be the observation error. The 
difference is a “measure” of the magnitude of the observation 
error. Now let us assume that we have a perfect model and a 
perfect observation, but the model variables are grid-box 
average and the observation is a point observation. Then, the 
difference between the model and the observation will denote 
the representativeness error of the observation. Obviously, the 

representativeness error of an observation is in the model and 
observation difference.

It is beyond question that the RTFDDA analysis and 
forecasts have errors. Because of the existence of this model 
error, the difference between an observation and a model 
background results from both model errors and observation 
errors. Generally, we do not have enough information to 
separate the model and observation errors, based on a single 
case. However, the statistics of model errors and observation 
errors can be used. In the RTFDDA QC scheme, the statistics 
of model errors and observation errors are combined and used 
to scale the quality of observations according to the difference 
between the observations and the model values. It is important 
to recognize that, due to the existence of model errors, the 
observation quality should not be scaled linearly. The reason 
is that, if a model-observation difference falls within the 
model statistical error, we do not know if the difference is 
from the model error or the observation error. Nevertheless, 
observations may be unreliable when the model-observation 
difference is larger than the statistical error. As a matter of 
fact, the traditional procedure is based on this concept to cut 
off the "bad" observations. Accordingly, a Gaussian 

Fig.1  Average Mean Absolute Error (MAE)  of surface temperature 
and relative humidity on Domain 2 (10 km grid) of the 
RTFDDA analyses and forecasts in August 2003, running at 
Aberdeen Proving Ground, Maryland.
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distribution is used to scale the quality and generate 
generalized quality flags (QF): 

    

QF = exp [ - (Aobs - Amodel)2 / (σ2X2)]           (1)

Where Aobs is an observation variable to be QC-ed, 
Amodel is the same variable derived from the model, σ is the 

combined statistical model error and  observation error (σ2 = 

σ2
model + σ2

obs) and X is a scaling parameter that specifies the 
weight distribution shape of the quality. X should be chosen 
based on data categories (measuring platforms and variables), 
the usage of the resultant quality flags, and experiences. Fig. 2 
shows an example of the variation of the quality flag values 
for 2 choices of X, based on the model and observation error 
statistics used in the RTFDDA systems. A larger X will 
produce a larger (smaller) quality flag (confidence value) for 
an observation with smaller (larger) model-observation 
difference. It should be pointed out that the shape of the 
Gaussian curves also depend on the σ. Currently, σ is derived 
from model error statistics based on the GFS model, by using 
the "NCEP-Method" and the observation error statistics 
provided by NCEP. It should be pointed out that these σ
values may not be ideal for the RTFDDA model and 
applications, and it is desirable to derive the σ value by 
comparing the RTFDDA analysis and 1- 3 hour forecasts with 
reliable observation sources (such as conventional radiosonde 
and METAR observations).

Finally, let us compare the new QC scheme with the 
traditional ones discussed in Section 2. The FDDA processes 
and dynamically incorporates observations into the full-
physics model, and the observation information is spread in 
the model space through proper spatial and temporal 
weighting functions and through physical adjustment by the 
model dynamics. Therefore, compared with the traditional QC 
schemes, checking the observations against the RTFDDA 
analysis and/or 1 - 3 hour forecasts of the system implicitly 
takes account of 1) the "error-max-check" but with a better 
first guess; 2) the  "buddy-check" but with better dynamical 
analysis buddies; 3) the "temporal consistency check", but 
with both model and observation time-continuity, and of 
course, 4) the “dynamical and physical check" under the 
strong constraint of the model physics and dynamics. 
However, unlike the "sharp cut-ff" approach used in the 
traditional QC schemes (shown by the green line in Fig. 2), the 
new QC procedure "ramps down" the confidence/quality 
levels for an observation gradually from 1 to 0. More 
importantly, the new QC method scales the overall error of an 

observation, including the representativeness errors that varies 
with analysis grid sizes and weather conditions.

4. USE OF QUALITY FLAGS IN DATA ASSIMILATION

The "station-nudging" approach which was initially 
developed by Stauffer and Seaman (1994) is employed in the 
data assimilation of the NCAR/ATEC RTFDDA system. The 
system have been modified and improved in the ATEC 
RTFDDA applications (Cram et al. 2001, Liu et al. 2002a, 
2002b, and Liu et al. 2003). The "station-nudging" approach 
dynamically relaxes model states toward the observation 
states by incorporating observations into the continuously 
running full-physics model. Observation innovations are 
added to the model momentum, mass and moisture equations 
at each time step, with proper space and time weighting 
functions that are centered at the observation time and 
location for each individual observation. The nudging terms 
(nudging tendencies) in the model equations can be written as:       

Here Aobs - Amodel is the observation innovation for each 
of the N observations, valid at the observation location; Wh, 
Wv and Wt are horizontal, vertical and temporal weighting 
functions, respectively; G is a nudging factor that specify the 
time period during which an observation innovation is active. 

Unlike the 3DVAR and 3DPAS approaches, where 
statistical model (background) and observation errors are 
explicitly used in the analysis process to seek a "best-fit" 
analysis under simplified dynamic constraints, the 4-D 
nudging method implicitly reduces the total error of the model 
(backgrounds at each model time-step) and observations by 
maintaining model dynamical and physical balances. The 
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Fig.2  Variation of observation quality scaling function for two given 
X parameters. For references, the green line represents an 
result of the  traditional “sharp cut-off” method. 

Q
F 

(x
 1

0)

Aobs-Amodel



nudging approach uses Aobs - Amodel at the observation time 
and location to approximate the total error at the observation 
point. Nevertheless, the nudging does not provide information 
on the error structure (co-variances), and thus the spatial 
weighting functions (Wh and Wv) are specified by referring to 
past statistic results and adjustments with a large number of 
experiments.

Although the nudging approach can not separate the 
model (background) and observation error from the "total 
error", it does explicitly consider the weight of observations 
and the model. The nudging term (Eq. 2) depicts exactly how 
much the model state (background) should be corrected, with 
the weighting functions and the nudging factor defining how, 
and by how much, the model should be corrected. The the 
products of nudging coefficient (WhWvWtG) approximates 
the Kalman filter gain. 

Nevertheless, since the weighting functions and the 
nudging factor are pre-defined constants, the nudging 
correction tendency varies proportionally to the model and 
observation differences. That is, the more the model diverges 
from the observation, the larger the correction that is imposed. 
This is perfectly fine if observations are perfect. However, 
observations have errors, and an observation possibly 
possesses larger errors when the total error (Aobs - Amodel) is 
larger. With reduced confidence levels on those observations 
which differ more from the model, we obviously do not want 
to nudge the solution at a larger (or even the same) rate than 
(as) for other observations for which we have greater 
confidence. The quality flag obtained from the new RTFDDA 
QC scheme provides an extra weight that represents the 
confidence of an observation. It can be simply incorporated 
into the nudging term as a confidence weighting factor (QF):   

5. EXPERIMENT RESULTS

To test the new QC scheme and the impacts of 
incorporating the quality flags in the RTFDDA analysis, two 
nested-grid, three-hourly-cycle RTFDDA simulations were 
carried out with the new and the traditional QC procedures. 
The same RTFDDA model configuration used during the 
OKC Joint Urban 2003 Atmospheric Dispersion Study field 
experiments (JU2003, Liu et al. 2004 - Paper 22.2 on this 
conference) was employed here. The model domains were 
defined over the Central Plains and were centered over 
Oklahoma City. A 5-day period, from 12Z Aug. 6 to 00Z Aug. 

WtWhWvG Aobs Amodel–( )QF
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12, 2003, during which both clear-skies and severe convective 
weather occurred, was selected for the numerical experiments. 
The case was selected because of its abundant upper-air and 
surface data, including aircraft reports, wind profiler data, 
satellite winds and high-density and frequency observations 
from OK mesonet. 

The traditional QC procedure used in the experiment 
includes "error-max-checks", "buddy-checks" and 
"consistency-checks". The maximun errors for the "error-
max-check" and the "buddy-check" were set at 8 m/s for U 
and V wind components, 8 C for temperature, and 70% for 
relative humidity. In the experiment with the new QC 
procedure, the statistical model errors and observations errors, 
for radiosonde varying with height and METAR observations, 
were used to define the sigma in Eq (1). The X values in Eq. 
(1) are experimentally specified according to the properties of 
model-radiosonde difference. As can be seen in Table 1, the X 
values for radiosondes are a bit larger than those for other 
observations. This is  because radiosondes are commonly used 
data sources and are considered more accurate and reliable 
than the other data sources. It should be pointed out that the 
new QC procedure can be used to estimate and monitor the 
overall quality of measurement platforms and, in turn, the 
statistical results can be used to refine the X values for the 
platforms. In the run with the new QC scheme, the quality 
flags were incorporated in the data analysis.

5.1 Data Quality-Control Results

Data QC procedures were run hourly for all observations 
valid within a time window from -30 to +30 minutes. Model 
(0 - 3 hour) forecasts valid at the exact hours (0 minute) are 
used as the first background. For simplicity, only QC results 
for the observations at 00Z and 12Z, when both synoptic and 
asynoptic data exist, are discussed. Fig.3 shows histograms of 
QC results for all surface and upper-air observations at 12Z, 
from the five-day simulation. It appears that the new QC 
scheme is able to reasonably ramp down the observation 
quality. About 70% of wind, 79% of temperature and 84% of 
relative humidity observations at the surface are designated as 
very good, with a quality flag of 9 or 10 (fig.3a). The quality 

Table 1: Quality scaling parameter X, used in RTFDDA 
experiments 

Variables u/v T q

Non-radiosonde 
observation

1.3 1.5 1.3

Radiosondes 1.8 1.5 1.8



of upper-air data varies with altitude. Generally, observations 
in the mid-layer, between 750 hPa and 300 hPa, yielded larger 
quality flags (higher quality Fig.3b) than those in the layers 
below and above it. The quality spectra of the observations in 
the lower layers are similar to those at the surface. As was 
pointed out earlier, the scale parameter X can be adjusted 
based on the error properties of observations and the usage of 
the resultant quality flags. Refining X values will alter the 
shape of the quality spectra shown in Fig.3. For  RTFDDA 
applications, the parameter settings allow the quality flags to 
be directly used as one of the weighting factors in the nudging 
term. By doing this, the result shown in Fig.3 indicates that the 
majority of the observations will be used with full confidence 
in the FDDA analysis.

Because observations are compared to a common 
baseline (background) during the QC process, it is possible, 
and of interest, to compare and monitor the quality of 
observations from various platforms with the new QC 
procedure. Fig.4 compares the observation-model wind 
scattering distribution at 00Z during the 5-day simulations for 
four major platforms: the conventional radiosondes (PILOT), 
NOAA/FSL NPN and CAP profilers (PROF), NOAA/FSL 
ACARS (AMDAR), and NOAA/NESDIS hourly GOES 
winds (SATWINDS), in the middle troposphere (750 - 300 
hPa). Only the U component of the winds is shown in the 
plots (the V component is similar). Each cross represents an 
observation-model pair, with colors denoting the resultant 
quality values of the observations. Apparently, the PROF 
observations possess the smallest bias and dispersion from the 

Fig.3a Quality spectra of the 2-m temperature, 10-m U wind component and surface relative humidity obtained with the 
RTFDDA QC scheme for all observations valid  between 11:30  and 12:300 UTC of the 5 days experiement.

Fig.3b Same as Fig.3a, but for the middle troposphere (750 - 300 hPa) observation.



baseline (model) state, with a bias of 0.5 m/s and an RMS 
difference of 2.1 m/s. This is partially because the PROF data 
used here are hourly averages, which may have a smaller 
representativeness error than other point-observation 
platforms. The PILOT and AMDAR observations display very 
similar scatter properties, with RMS differences of 3.1 and 3.3 
m/s respectively. Note that PILOT observations yielded 
overall larger quality flags because of the assignment of a 
larger X (more confidence) for the platform. A few clustered 
outliers with quality flag of 0 or 0.1 in AMDAR strongly 
suggest some errors associated with single flights. Finally, 
SATWIND observations are a bit more scattered than those 
from other platforms, with an RMS difference of 4.1 m/s.

It should be pointed out that, because the new QC method 
makes use of the statistical model and observation errors, one 
needs to be careful when examining the quality result of each 

individual observation. The error of the model background 
may vary spatially and it may have bias. The same positive 
sign of the U wind bias from all platforms may suggested a 
systematic overestimate of U winds by the model in the layer, 
whereas the differences of the magnitudes of the bias between 
the platforms may suggest the existence of an observation bias 
of the platforms. Specifically, although SATWIND 
observations are generally less accurate due to the limitation 
of the retrieval schemes used. Also, these observations exist 
are mostly observed in regions where cloud and precipitation 
prevail where the model can be less accurate than in other 
regions. Thus the larger RMS difference between the 
SATWIND observation and the background may 
underestimate the quality of SATWIND observations. 

The upper-air temperature used in the RTFDDA 
simulation mainly comes from the twice-daily radiosondes 

Fig.4  Observation (vertical coordinate)  vs model (horizontal coordinate) scattering plots of the middle troposphere 
(750 - 300 hPa) U wind component of radiosonde (a), Profilers (b), ACARS (c) and GOES satellite winds, valid 
between 23:30 and 00:30 UTC, for the 5 day experiment. (QC=10xQF)

a b

c d



(TEMP) and aircraft reports (ACARS/AMDAR). AMDAR 
observations are made at very irregular times and locations. 
Unlike winds, temperature observations from TEMP and 
AMDAR display much smaller dispersion between the model 
and observations. This is particularly true in the middle 
troposphere (between 750 hPa and 300 hPa, not shown). In the 
lower layer (below 750 hPa, shown in Fig. 5), some outliers 
can be seen in the boundary layer (i.e. the regions with warmer 
temperature in Fig.5). Both TEMP and AMDAR are 0.5 C 
colder than the model in this layer, and Fig.5 suggested that 
this systematic difference may be caused by a model warm 
bias. 

5.2 Impact On RTFDDA Analyses and Forecasts

Verification of the RTFDDA analyses and forecasts were 
conducted hourly by interpolating the model to observation 
stations during the 5-day simulation. With 3-hourly cycling, 

we can divide the analyses and forecasts in each cycle into 
forecast stages of three hour windows of forecast lengths, i.e. 
-3 - 0 hour final analyses, 1 - 3 hour forecasts, 4 - 6 hour 
forecasts... The same periods from all 8 cycles in a day will 
cover the full diurnal evolution for that forecast period. 

Fig. 6 compares the average Mean Absolute Errors of the 
surface variables of the final analyses and 10-12 hour 
forecasts, run with the new and the old QC procedures, on the 
Domain 3. The results are mixed. The RTFDDA simulation 
with the new QC procedure appears to improve the surface 
analyses for all fields. It also produces better forecasts of the 
surface moisture, and some improvements to the surface 
temperature and wind direction forecasts during the daytime. 
Nevertheless, it slightly degrades the forecasts of wind speed 
and nighttime temperature. 

The relatively small differences between the two runs 
may be because with the current X setting, about 80% of 
observations are classified as "near-perfect", the same as with 
the old-QC schemes, and 10% of the rest are weighted with a 
slightly lower weight that is still close to those with the old 
QC procedure. Large differences between the new and the old 
QC runs exist only for the other 10% of the "most 
questionable" observations. However, as pointed out earlier, 
efforts to properly define and scale observation-quality flags, 
and properly weight these flags in the data assimilation, are 
far from complete. Particularly, the statistical model error 
used in the current system is based on NCEP GFS model 
which is very different from the RTFDDA model. Benefit can 
be likely achieved by refining these procedures.    

6. SUMMARY AND FUTURE WORK

NCAR/RAP and the Army ATEC program have been 
developing a multi-scale rapidly cycling real-time FDDA and 
forecasting system. The system produces spun-up FDDA 
analyses and forecasts in real-time, and incorporates 
observations from diverse measuring platforms. The 0 - 3 
hour model forecasts from the system provide ideal three-
dimensional weather states that can be used to examine 
observation quality, which may vary between observation 
platforms, and in space and time as well. In this paper, a 
simple and efficient observation data quality control (QC) 
procedure was constructed, based on the observation-model 
(the 0 - 3 hour model forecasts of the real-time RTFDDA 
system) difference and the statistics of model errors and 
observation errors. This QC procedure not only can 
objectively define the error tolerance criteria for elimination 
of most bad observations, but it can also estimate and assign a 
generalized quality flag to each individual observation, 
without regard to the platform by which it was observed. The 
quality flags, that represent varying degrees of confidence in 

Fig.5 Same as Fig.4, but for temperature from radiosondes (a) and 
ACARS (b), with observations valid between 11:30 and 12:30 
UTC in the lower troposhere (below 750 hPa). 

a

b



observations (i.e. rough estimate of the probable errors), are 
determined according to the difference between the 0 - 3 hour 
model forecast and the observations, which are scaled by the 
statistical properties of the model-background and observation 
errors. 

The quality flags of observations obtained from this QC 
procedure are incorporated into the four-dimensional data 
assimilation engine in the RTFDDA system. First, the quality 
flags are scaled to a value between 1 (the best quality) and 0 
(the worst quality). Then, in the data analysis, each 
observation is weighted uniquely in the "station-nudging" term 
by its quality flag (or confidence factor). This approach allows 
the RTFDDA system to heavily weight the reliable 
observations and to lightly weight the less reliable 
observations.

Numerical experiments were conducted over a five-day 
period in the Central Plains with the model centered on 
Oklahoma City. Preliminary results show 1) a significant 
increase in the computation efficiency of the new QC scheme, 
because it skips many quality checking strategies used in the 
traditional QC procedure, and 2) reasonably good performance 
in discriminating outliers, and scaling the quality of 
observations. Statistical verification of two experiments 
conducted with the old (traditional) and the new RTFDDA QC 
procedure indicate some encouraging improvements in the 

RTFDDA analyses and forecasts with the new RTFDDA QC 
procedure.   

Finally, the new QC scheme is critically dependent on 
the accuracy of the model background. The better the model, 
the more accurate the QC, and, in turn, the better the model 
analysis is with the use of the QC information. Due to the 
existence of model errors, the QC scheme, should and can be, 
further refined according to the error properties of particular 
models and observations used in the application. This can be 
done using real-time runs or using a short history of the model 
results. For example, it is possible and desirable to estimate 
the systematic bias of both the MM5 model and the 
observation platforms, based on the statistics of the data 
quality generated by the RTFDDA system. The bias should be 
used to improve the QC procedure and the data analysis (Dee 
and Da Silva, 1998). On the other hand, some prior 
observation QC information, such as obtained by 
instrumentation calibration and from other QC schemes at 
data dissemination centers for certain platforms, can be 
collected and combined into the QC procedure to better 
quantify the final quality assignments. Finally, although, some 
data assimilation schemes such as 3DPAS and 3DVAR may 
not be able to make full use of the quality flags for each 
individual observation, the quality flags do provide a way to 
objectively define "cut-off" criteria to draw out "bad" 

Fig.6 Average Mean Absolute Errors (MAE) of surface temperature (a), specific humidity (b), wind speed 
(c) and wind directions (d) of the RTFDDA final analyses (solid) and 10 - 12 h forecasts (dotted)  on 
Domain 3, with the traditional (yellow) and new RTRFDDA QC (red) procedures.
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observations. Furthermore, since the model provides complete 
atmospheric states, the system may be extended to monitor the 
quality of observations of variables that are not directly 
forecasted by the model.
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