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1. INTRODUCTION. 
 

An algorithm is proposed to identify the best 
correlation between the variables of two data sets.  The 
relationship among the variables could be linear or 
nonlinear and it can have time delays among the 
variables.  This algorithm consists of:  i) performing 
mathematical transformations to the original variables; 
ii) organize the information into small groups; iii) select 
the best predictors for each group; and iv) perform 
random search to select the winner variables.  
 

Forty rainfall stations located in Puerto Rico 
(PR) with 43 years of monthly observations were used 
to implement and assess the proposed algorithm.  
Meteorological indexes based on sea level pressure, 
sea surface temperatures, and rainfall were used to 
identify teleconnections between PR rainfall processes 
and global meteorological indexes.  It was found that the 
major factors that drive the PR rainfall process are the 
Artic Oscillation Index, Brazil Rainfall Index, North 
Atlantic Oscillation Index, and Sahel Rainfall Index.  The 
winner variables from the selection algorithm were also 
used to design and train an artificial neural network 
model to predict PR rainfall process.  Thirty-eight years 
were used for training and five years for model 
assessing.  Results suggest that the proposed 
methodology is a potential tool to predict the monthly 
precipitation at any station, assuming that at least 40 
years of monthly rainfall observations are available. 
 

A nonlinear dynamic system was simulated 
and modeled using an artificial neural network model.  A 
feedforward neural network model with the Levenberg-
Marquardt algorithm was successfully implemented.  
The structure of the neural networks includes two layers 
with linear and nonlinear transfer functions.  Simulation 
results show that a neural network model can properly 
represent a nonlinear dynamic system.  The cross 
validation technique was used to select the transfer 
functions and the required number of the neurons in the 
hidden layer. 

 
Artificial neural networks (ANN) methodology is 

an emerging strategy to model the multivariate inputs  
 

and outputs of an atmospheric dynamic 
system.  ANN is especially useful for modeling nonlinear 
climate dynamics, since the ANN algorithm has transfer 
functions to model nonlinear relationships.  Several 
researchers have reported successful applications of 
the neural networks methodology to atmospheric 
sciences.  Snell (et al. 2000) pointed out that many 
climate studies require generating estimates of climate 
variable at a given location based on values from other 
locations.  They suggest a methodology based on ANN 
to estimate temperatures for some locations given 
information from a lattice of surrounding locations.  
Aviolat (et al. 1998) apply an ANN to describe the 
creation of clouds at different layers.  Two-hour period 
of observations was used to develop the input patterns 
to train an ANN.  Results show evidences that the 
prygeometer with an ANN provide a very accurate 
estimate of the cloud amount at the main cloud layer.   
 
Grecu and Krajewski (2000) proposed an efficient 
methodology for detecting anomalous propagation 
echoes in radar data.  The method is based on volume 
scan reflectivity observations and application of neural 
networks for classification of the base scan radar echo 
into the anomalous propagation echoes or rain classes.  
They pointed out that the neural networks approach 
presents a conceptual simple yet rigorous way to 
address the problem of anomalous propagation echoes 
detection.  Tangang (et al. 1998) applied neural 
networks methodology to forecast the sea surface 
anomaly on three regions: el Niño 4, el Niño 3.5, and el 
Niño 3.  The inputs of the neural networks were the 
extended empirical orthogonal functions of the sea level 
pressure field that cover the Tropical Indian and Pacific 
Ocean. 
 
 ANN has extensively been applied to model 
multiple inputs and outputs of linear and nonlinear 
systems. Successful applications have been reported in 
the literature (Ramirez-Beltran, 2000a, 2000b, and 
2002).  The organization of this paper is as follows.  
Description of the utilized data is presented in section 2.  
Simulation of a nonlinear dynamic system to assess the 
capability of the artificial neural network is presented in 
section 3.  The implemented methodology is described 
in section 4, and conclusions are given in section 5. 
 

*Corresponding authors address: Nazario D. Ramirez,  
University of Puerto Rico, Dpto. Industrial Engineering,  
Mayaguez, PR, 00680, e-mail: nazario@ece.uprm.edu     



2.  DATA. 
 

The proposed algorithm was implemented to 
model 40 rainfall stations located in Puerto Rico (see 
Figure 1).  The available information covers 43 years 
from1960 to 2002 and was provided by the Joint 
Institute for Caribbean Climate Studies of the University 
of Puerto Rico, the National Diagnostic Center located 
in Boulder Colorado, and the National Weather Services 
located in San Juan PR.  It should be noted that most of 
the meteorological indexes were obtained by the 
Internet at the following address http:// tao.atmos. 
Washington.edu. 

 
The rainfall records were correlated to well 

known sea surface temperature (SST), sea level 
pressure (SLP), rainfall index, and others global 
meteorological indexes. The studied variables are 
described in Table 1.   

 
Table 1.  Meteorological Indexes 

 
Number  Code Description 

1 NA SST in the North Atlantic (5-20°N, 
60-30°W) 

2 SA SST in the South Atlantic (0-20°S, 
30°W-10°E) 

3 TE SST in Tropical Equatorial (10°S-
10°N, 0-360°) 

4 N12 SST in the equatorial Pacific: El Niño 
1-2 (0-10°S, 90-80°W) 

5 N3 El Niño 3 (5°N-5°S, 150-90°W) 
6 N4 El Niño 4, (5°N-5°S, 160°E-150°W) 
7 N34 El Niño 3-4 (5°N-5°S, 170-120°W) 
8 NAO North Atlantic Oscillation index 
9 AO Artic Oscillation Index 
10 SAH Sahel Rainfall Index (20-8N, 20W-

10E) 
11 BRA North Brazil Rainfall Index 
12 CT Could Tong 
13 SOI Southern Oscillation Index 
14 SR Solar Radiation  
15 SS Sun Spots 

 
 
 

3.  SIMULATION 
 

Simulation technique was used to assess the 
capabilities of the artificial neural network to model a 
nonlinear dynamic system. 

 
 

 

 
 

Figure 1.  Location of Puerto Rico rainfall stations. 
 
 

A nonlinear dynamic system can be 
represented by a nonlinear deferential equation, which 
can be approximated by a nonlinear difference equation.  
The difference equation is essentially a nonlinear 
transfer function since express the relationship between 
the inputs and output of a nonlinear dynamic system.  
The Monte Carlo simulation technique was used to 
mimic the behavior of a nonlinear dynamic system and 
ANN is used to model the relationships  between inputs 
and outputs of the simulated system.  The input 
variables of the system were simulated using the 
following expressions: 
 

tt Sx ,1,1 200 ε++=                         (1) 
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where )ln( tt rz = and )ln( tt sw = ;  rt is a sequence 
of integer numbers from 1 to N, st is also a sequence of 
integer numbers from N to 1, where N is the total 
number of data to be generated, εi,t is a random number 
for the ith variable that follows a normal distribution with 
mean zero and a constant variance.  The coefficients 
and the variances were selected such that the values 
resemble the behavior of a chemical process.  The 
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selected variances for εi,t  were 1.2, 0.24, and 0.02, 
respectively.   represents the flow of amyl acetate at 

time t, represents the water flow at time t, and  

the flow of acetic acid at time t.  

tx ,1

tx ,2 tx ,3

 
The response of the dynamic system is the pH 

of enriched salt at time t and it was assumed that it 
could be expressed by the following nonlinear difference 
equation: 
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where φ  and θ  are designed parameters that 

modulate the appropriate range of the output, and  is 
the time delay applied to each variable.   

id

 
A feedforward neural network with two layers 

was selected to model the dynamic system.  The 
training patterns at time t are represented by the Pt input 
matrix and the Tt target vector.  The input matrix 
contains the values of the x’s and the elements of the 
target vector are the pH values.  Thus, the training 
patterns can be written as follows: 
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The pH of the enriched salt was simulated 

during 150 hours.  The first 130 values were used to 
train the ANN model and the last 20 hours were used to 
validate the model.  The training patterns were used to 
identify the best transfer functions and the optimal 
number of neurons in the hidden layer.  The training 
patterns suggest the following structure:  the logsig and 
linear functions should be used in the first and second 
layers respectively.  The optimal numbers of neurons 
were: two and one in the first and second layers, 
respectively.  The first 130 values were used to fit the 
neural network model and the level of fitting was R2 
=.90.  Thus, the ANN model explains 90% of the 
variability of the pH and the average absolute prediction 
error was 0.43.  These measurements indicate that the 
ANN model successfully represents the underlying 
dynamic system.  Figure 2 shows the output of the 
simulated pH and the predicted values from the neural 
network model.  This figure confirms the prediction 
capability of the ANN model. 
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Figure 2. Simulation of a nonlinear dynamic system. 

 
4.  METHODOLOGY 
 

The proposed methodology includes two major 
steps:  (1) Regression and variable selection algorithm 
were used to identify the meteorological variables that 
are highly correlated with rainfall processes.  (2) An 
ANN model was designed and trained to predict the 
monthly rainfall processes.   
 
4.1. Identifying the best predictors.  
 

An ANN algorithm will provide predictions with 
reasonable skillfulness if the training patterns contain 
the appropriate information; otherwise, the ANN will 
generate misleading predictions.  Thus, an algorithm is 
introduced here to identify the best predictors given that 
the number of variables is greater than the number of 
observations.  

 
The algorithm consists of six major steps: (1) 

implement time lags and mathematical transformations 
to the original variables; (2) organize the information into 
small groups, (3) select the best predictors for each 
group; (4) reorganized the best predictors;  (5) repeat 
three times steps 1 to 4, and (6) select the winner 
variables. 
 

(1) Mathematical transformation.  A mathematical 
transformation is performed to be able to 
identify linear and nonlinear relationships 
between the inputs and outputs of the given 
system.  Lag transformation is also 
implemented to each variable.  The lead-time 
corresponds to the smallest lagged variable, 
and consequently the prediction will be 
constructed based on the passed values. 

(2) Small groups.  The transformed variables will 
be organized into groups with small amount of 
variables.  The number of variables in a group 
should be 25% or less than the number of 
observations contained in the response 
variable.  This rule was implemented to avoid 
bias on regression estimators, which occurs 

  



when the number of variables exceeds the 
number of observations. The members of each 
group will be randomly selected.  This 
randomly selection will produce a robust 
variable identification and random search. 

(3) Best predictors in each group.  The stepwise 
algorithm is used to select the predictors that 
are highly correlated with the dependent 
variable in each group.   A diagnostic test of 
multicollinearity was implemented to avoid the 
presence of this problem and to ensure robust 
prediction (Montgomery, et al 2001). 

(4) Reorganize the best predictors.  The winner 
variables for each group will be included into a 
new data set and the elements of the new set 
will be organized into small groups.  Steps 2 
and 3 will be repeated until the number of 
variables is equal or less than the designed 
group size.   At the end of this step the winner 
variables are saved. 

(5) Repeat random selection.  Repeat three times 
steps 1 throughout 4, and collect the winner 
variables at each iteration.   

(6) Select winner variables.  Prediction errors will 
be computed at each group and the final group 
will be the one that provides the smaller 
prediction error without multicollinearity 
problem. 

 
The described algorithm was used to identify which 

meteorological indexes explain best the PR rainfall 
processes.  Forty rainfall stations with 43 years of 
monthly precipitation data were used to integrate the 
available information.  To minimize calculations only 
lags of order one and two were implemented.  The 
number of observations for each variable is 43 and the 
number of variables varies depending on the month to 
be predicted.  For instance, fifteen  meteorological 
indexes were used to predict January i.e., (24*15) 360 
predictors were created, for February were (24*15+15) 
375, and (24*15+15*15) 525  for December.  If a 
mathematical transformation is implemented then the 
number of variables will be duplicated.  For instance if 
January will be predicted and the implemented 
transformation is natural log, then the number of 
variables will be 720.  The response variable and 
predictors were standardized to obtain regression 
coefficients that express the proportional contribution of 
each variable under the same scale.  Thus, the sum of 
the regression coefficients reveals the importance of 
each winner variable for every month and for every 
rainfall station.  Thus based on the studied information, 
the most important variables to predict the rainfall 
process in PR are exhibited in Figure 3.  It can be 
shown that the best predictors to predict one month 
ahead the rainfall in Puerto Rico are:  Artic Oscillation 
Index, Brazil Rainfall Index, North Atlantic Oscillation, 
and Sahel Rainfall Index.   

 
In PR there are two rainy seasons characterized by 

having excesses of rainfall, the first occurs on May and 

the second one on September.  Thus, it is expected that 
the mechanisms that generates these two rainfall 
seasons are different.  Figure 4 shows the predictors 
that best explain the rainfall occurrences in May and 
they are: Solar Radiation, Sunspots, Artic Oscillation 
Index, North Atlantic Oscillation Index, and Sahel 
Rainfall Index.  The horizontal axis shows the codes of 
the meteorological indexes, which were defined in Table 
1, and the vertical axis reveals the proportion of 
importance of the regression coefficients. Figure 5 
shows the identified lags to predict precipitation on May 
in each variable.   The identified lags are given in the 
horizontal axis while the regression coefficients are 
given on the vertical axis.  For instance, to predict PR 
precipitation on May for a given year it is required to use 
the predictor values for February of the current year, 
and also predictor values for May of the previous two 
years.   Thus, the selection algorithm not only identifies 
the variables but also the optimal lags involved in the 
process. 
 

Figure 6 shows the predictors that best explain the 
rainfall occurrences on September and they are: Sahel 
Rainfall Index, North Atlantic Oscillation Index, Brazil 
Rainfall Index, and Artic Oscillation Index.  The 
horizontal axis shows the codes of the meteorological 
indexes, and the vertical axis reveals the proportion of 
importance of the regression coefficients. Figure 7 
shows the identified lags to predict precipitation on 
September.   The identified lags are given in the 
horizontal axis while the regression coefficients are 
given on the vertical axis.  For instance to predict PR 
rainfall on September of a given year it is required to 
use the predictor values for January and April of the 
current year and previous years, as well as the predictor 
values for June of the previous two years. 

 

 
Figure 3.  The best predictors that explain the monthly 

rainfall variability in PR (40 stations, 1960 – 2002). 

  



 
Figure 4.  The best predictors that explain the rainfall in 

May. 
 

 
 

Figure 5.  Optimal lags to predict PR rainfall on May 

Figure 6.  The best predictors that explain the rainfall on 

September. 

 
  

Figure 7.  Optimal lags to predict PR rainfall on Sept. 
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 predictors identified by applying the selection 
algorithm described in the previous section.  It was 
noted that on the average 50 % of the rainfall variability 
was explained by using only the fifteen meteorological 
indexes.  Thus, with the purpose of increasing the 
prediction capabilities of the neural networks the 
following predictors were added to the meteorological 
indexes: lagged variables of the considered rainfall 
process, the first three principal components and its 
lagged values of the following variables: rainfall 
variables, maximum air temperature, minimum air 
temperature from the underlying 40 stations.  In 
summary the total number of predictors varies 
depending of the month to be predicted, the obtained 
predictors are as follows: 600 for January, 624 for 
February, and 831 for December.  The explained 
variability increased from 50% to about 65% after 
adding the described variables.   
 

peed up the convergence process.  The LM 
algorithm has the advantage of computing automatically 
the learning rate, depending on the roughness of the 
optimization surface.  Thus, for instance the learning 
rate is small when the slope of the optimization surface 
is changing very fast.  However, the learning rate is 
large when the optimization surface is very smooth.  
The constants that control the magnitude of the learning 
rate is called the Marquardt constant and this constant 
is selected in such a way that Jacobian matrix is always 
positive definite and consequently the algorithm ensure 
convergence.  The major disadvantage is that it requires 
large memory to update the weights and the biases of 
the ANN.  The conventional backpropagation algorithm 
updates the weights by using only the current 
information, while the LM requires using all the training 
sets at the same time (Hagan et al. 1996; Hagan and 
Menhaj, 1994). 
 

nted with a group size of 10 and the best 
predictors usually fluctuated between 4 to 8 variables.  
The training patterns can be written in the following 
form: 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−

−−−

−−−

kk dtkdtkk

dtdt

dtdt

t

zzz

zzz
zzz

,1,1,

,21,21,2

,21,11,1

22

11

L

MMMM

L

L

P

[ ]ttt www 11 −= LT

w
idtiz −,

thi  id , 

tw

 
NN m el was designed for every mo h 

 for every station.  Thus, to predict a single yea
ires developing 480 different models and everrequ

m ires applying variable selection, training and 
performing prediction.  Thirty-eight years (1960 – 1998) 
of monthly data were used to train the ANN and the last 
five years (1998 – 2002) were used to validate the 
prediction algorithm.  Figure 8 shows the model fitting 
performances on station 1 during 38 years for the month 
of September, this figure shows the observed and fitted 
values.  The number of the year is given in the 
horizontal axis while the amount of precipitation in 
inches is exhibited in the vertical axis.  

 
The cross validation results are shown in 

Figures 9, 10 and 11.  Figure 9 shows the comparison 
of 40 stations between the observed

year 1998.  The blue bar is the observed 
value and the red bar is the predicted value.  The 
horizontal axis of this figure is the number of station and 
the vertical axis is the amount of rainfall in inches. This 
particular year and month was selected with the 
purpose of evaluating the model prediction capabilities 
during the presence of the hurricane Gorges, which 
made a landfall in PR on September 22, 1998.  The 
accumulated rainfall in the 40 stations for the year 1998 
was 591.63 inches and the predicted value was 527.15 
inches (see Figure 10).  It should be noted that the 
average, which was based on 43 years of accumulates 
rainfall for the month of September, is 338.80 inches.  
Therefore, the neural networks model was able to 
predict the excess of rainfall generated by the hurricane 
Gorges.  Figure 10 shows the observed and predicted 
accumulated rainfall in the 40 stations.  The blue bar is 
the observed value and the red bar is the predicted 
value. The horizontal axis shows the years and the 
vertical axis the accumulated rainfall in the 40 stations.  
This figure shows that the observed and predicted 
values are almost in agreement; indicating that the ANN 
model is able to predict rainfall either in dray or in wet 
years.   Figure 11 shows the contours of observed and 
predicted rainfall for September 1998.  These contours 
reveal a good agreement between the observed and 
predicted values.   This figure shows that heavy rainfall 
was recorded along the hurricane track.  The largest 
amount of rainfall recorded during that month was 36 
inches on Maricao station (station 20).  
 

  



 
 

Figure 8.  Model fitting performances station 1 
(September, 1960 – 1997). 

 

 
 

Figure 9.  Observed versus predicted values September 
1998 

 
 

Figure 10.  Accumulated rainfall in September including 
40 stations 

 
 

Figure 11.  The observed and predicted contours are 
given on the top and bottom plots, respectively. 

  



5. CONCLUSIONS. 
 

An algorithm to perform variable selection is 
proposed.  The algorithm has the capability of 
identifying the predictors that explain a response 
variable.  The algorithm has the capability of 
determining the linear and nonlinear relationship as well 
as the time lags among the inputs and outputs of a 
dynamic system.  The selection algorithm uses the 
stepwise method with a random search to select the 
best predictors.  The limitation of the proposed algorithm 
is the required computational time.  Expensive 
calculation occurs (in a PC Pentium IV) when the 
number of predictors is more than 1,500.   For moderate 
amount of variables the calculation is obtained in a 
reasonable computational time. 

An ANN model was designed and trained to 
predict the PR monthly rainfall processes.  The 
proposed prediction scheme uses the outputs from the 
variable selection algorithm to increase prediction 
capabilities, i.e., the best predictors are used to train the 
ANN model.  The LM algorithm was used as the 
learning rule to ensure convergence.  The cross 
validation technique is used to identify the best transfer 
functions and the number of neurons in the hidden 
layer.  The neural networks model was able to predict 
the excess of rainfall that occurred on September 1998.  
The excess of rainfall was caused by the landfall of the 
hurricane Gorges.  In summary the proposed prediction 
scheme is a potential tool to predict the monthly rainfall 
process in almost any rainfall station as long as rainfall 
records is available for at least during 40 years. 

Meteorological indexes based on sea level 
pressure, sea surface temperature, and rainfall were 
used to identify teleconnections between PR rainfall 
processes and global meteorological indexes.  It has 
been shown that meteorological indexes that best 
explain the variability of the rainfall in PR are: Artic 
Oscillation Index, Brazil Rainfall Index, North Atlantic 
Oscillation, and Sahel Rainfall Index.  PR has two rainy 
seasons characterized by having two rainfall peaks, one 
occurs on May and the second one on September.  It 
has been shown that the variables that drive the rainfall 
patterns in May are:  Solar Radiation, Sunspots, Artic 
Oscillation Index, North Atlantic Oscillation Index, and 
Sahel Rainfall Index.  The variables that best explain the 
rainfall variability in September are:  Sahel Rainfall 
Index, North Atlantic Oscillation Index, Brazil Rainfall 
Index, and Artic Oscillation Index.    
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