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Abstract 
In the Earth science disciplines, both the observational instrumentation and numerical forecasting 
technology used to generate data are improving so rapidly that the techniques available to manage 
and use the resultant datasets are struggling to keep pace. A notable example is represented by the 
atmospheric science discipline. 

As observational and model output datasets in the atmospheric science community increase in 
resolution, there is an increasing demand to cross the boundaries between the GIS (Geographic 
Information Systems) and ASIS (Atmospheric Science Information Systems) communities. For 
example hydrologists, who traditionally use GIS, are interested in incorporating radar information 
into their GIS analysis and modeling systems. On the other hand, researchers and educators in the 
atmospheric science are interested in integrated views of terrain, infrastructure, and demographic 
data (typically in GIS data systems) with atmospheric data from forecast models, satellites, and 
radar data. Differences in the way the two communities think about their data can give rise to 
difficulties in integrated analysis and display of datasets from the two disciplines. For example, the 
atmosphere inherently has three spatial independent variables while the GIS community focuses on 
two. Furthermore, the atmosphere changes on time scales much shorter than those usually 
considered within the GIS community. Consequently, the atmospheric scientist thinks in a 4-
dimensional space and requires a 4-dimensional data model. The paper presents a general, abstract 
view of differences between the data models of the two communities as well as a schematic 
description of where the data systems (traditional GIS, evolving systems based on Open GIS 
specifications, and traditional ASIS) overlap and where they are distinct from each other. Examples 
in each category are described. Finally, even for the datasets which seem to lie in the area of overlap, 
some of the difficulties inherent in the integration process are discussed along with solutions where 
they have been developed.  

GIS and ASIS abstract data models 
In the Earth sciences, there are many conceptual models for the datasets in each subdiscipline.  For 
the purposes of this discussion, the focus will be on atmospheric science because, in many cases, 
the data models differ dramatically from those in the GIS community.   

In order to understand the ability of GIS data models to represent Atmospheric Science (AS) 
datasets, it is useful to consider the following questions: 



1. How important is the geographic aspect for AS data? 
2. How well is time modeled? 
3. How much of AS semantics is captured? 

 

Geographic aspect 

Geographic information can be defined as: information concerning phenomena implicitly or 
explicitly associated with a location relative to the Earth [ISO 19101]. Therefore, it is possible to 
distinguish two main topics: observed phenomena and Earth locations. 
 
Due to the intrinsic nature of AS and the associated acquisition technologies (e.g. multiparametric 
remote sensing techniques), AS datasets primarily are used to capture and represent information 
related to complex observed phenomena.  Conversely, the Earth location aspects of the datasets are 
traditionally kept as simple as possible.  This approach stems, in part, from the fact that spatial 
resolution and geo-collocation have been inaccurate (as compared to GIS data) for many satellite 
datasets. The most used structures for representing observed phenomena are implicitly positioned 
over the Earth (e.g. regular grids); metadata describing dataset coordinate reference system (if any) 
rarely include values on geo-datum.  
 
On the other hand, traditional GIS models consider the Earth location as important as the 
phenomenon itself. This is due to the need to enable complex and precise spatial queries. 
Consequently, most popular structures for representing observed phenomena (e.g. geometric entities, 
such as: point, line, polygon, etc.) are explicitly positioned over the Earth, enabling extremely 
complex topology-based functionality.  Moreover, metadata about the coordinate reference system 
are extremely important. 

Time modelling 

Time is essential for understanding AS phenomena. It can be expressed in units ranging from 
seconds (e.g. rainfall variations measured by a sequence of radar scans) to centuries (climatological 
variations calculated through complex models). Both running clock (e.g. experiment time) and 
epoch based (e.g. calendar time) approaches are commonly used. For AS data, time location and 
evolution of observed phenomena are as important as spatial location.  
 
Historically GIS data are characterised by slow temporal evolutions (e.g. political boundaries, social 
statistics, infrastructure networks, etc.). Traditional GIS can manage time (e.g. as a layer attribute) 
but generally time series are not supported (e.g. visualisation of plume trajectories). The epoch 
based approach is generally the only one supported. 

AS semantics 

In terms of semantics, AS datasets represent the measurements of the sensors from which they are 
collected [ISO 19129 DW2] or, in the case of synthetic data (e.g. the output of forecast models), the 
source from which it was generated. These aspects are not a typical component of traditional GIS 
data models. 
 
Moreover, AS datasets are commonly characterised by aggregation structures. Determining the 
right granularity levels which characterise a complex AS dataset is a real issue when dataset 
semantics must be captured and modelled. Several extremely useful aggregation structures – used at 
different levels -- are:  



• complex hierarchical tree (e.g. multiparameter complex datasets),  
• simple trees (e.g. time series),  
• grid cell aggregations (e.g. clusters, regions, topological sets, etc.) 
• fiber bundles (e.g. multichannel satellite imagery), etc. 

 
Aggregation structures characterising traditional GIS datasets are less complex, such as simple trees 
(e.g. views made up of thematic layers). 

Conceptual differences between GIS and ASIS data models 
 To develop a concrete understanding of the conceptual differences between GIS and ASIS data 
models, it is helpful to compare some of the most common abstract models for both systems. For 
ASIS, simplified schemas of the netCDF and the VisAD (function modelling) abstract models are 
described in the following sections. For GIS, a simplified schema of the general feature abstract 
model (used by OpenGIS and ISO TC 211) is considered. Content models stem from abstract 
models, defining metadata which are introduced in order to describe data model concepts and their 
relationships. 

VisAD abstract data model 

The VisAD data model assumes that data objects are approximations to mathematical functions. 
VisAD data objects may be simple real number values, text strings, vectors of real numbers, arrays 
such as images or grids, or complex hierarchies of data. 
 
The central metadata of each data object is its mathematical type, which is a kind of data schema. 
The type defines names for primitive numerical and text values, groupings of these values, and 
functional relations between values. For example, an earth image may have the type: ((latitude, 
longitude) → radiance) which says that an image is a functional relation from (latitude, longitude) 
pairs to radiances. Other metadata associated with an earth image data object may include 
sampling geometry and topology for (latitude, longitude) pairs, units for latitude, longitude and 
radiance, a coordinate transformation relating (latitude, longitude) to some reference coordinate 
system (e.g., a standard Mercator map), missing data indicators for radiance values, and error 
estimates attached to latitude, longitude and radiance values. A time sequence of earth images may 
have the type: 
(time → ((latitude, longitude) → radiance)) with additional metadata for time units and sampling 
[Hibbard]. 
 
The following figure depicts a simplified schema of the VisAD functional model. 
 



 
Figure1: Simplified schema of the VisAD functional model 

NetCDF abstract data model 

The netCDF data model contains dimension, variable, and attribute objects which are all 
characterised by both a name and an ID value by which they are identified. These objects can be 
used together to capture the meaning of data and relations among data fields in an array-oriented 
dataset.  This is shown in the following diagram. 
 

 
Figure2: NetCDF data model schematic 

 
 
The following short netCDF example is taken from an official tutorial (by Russ Rew, Glenn Davis, 
Steve Emmerson, and Harvey Davies Unidata Program Center) and it is useful to illustrate the 



concepts of the depicted data model. The notation used to describe this simple netCDF dataset is 
called CDL (network Common Data form Language), which provides a convenient way of 
describing netCDF files.  
 
netcdf example_1 {  // example of CDL notation for a netCDF file 
 
dimensions:          // dimension names and sizes are declared first 
        lat = 5, lon = 10, level = 4, time = unlimited; 
 
variables:           // variable types, names, shapes, attributes 
        float   temp(time,level,lat,lon); 
                    temp:long_name     = "temperature"; 
                    temp:units         = "celsius"; 
        float   rh(time,lat,lon); 
                    rh:long_name = "relative humidity"; 
                    rh:valid_range = 0.0, 1.0;      // min and max 
        int     lat(lat), lon(lon), level(level); 
                    lat:units       = "degrees_north"; 
                    lon:units       = "degrees_east"; 
                    level:units     = "millibars"; 
        short   time(time); 
                    time:units      = "hours since 1996-1-1"; 
        // global attributes 
                    :source = "Fictional Model Output"; 
 
data:                // optional data assignments 
        level   = 1000, 850, 700, 500; 
        lat     = 20, 30, 40, 50, 60; 
        lon     = -160,-140,-118,-96,-84,-52,-45,-35,-25,-15; 
        time    = 12; 
        rh      =.5,.2,.4,.2,.3,.2,.4,.5,.6,.7, 
                 .1,.3,.1,.1,.1,.1,.5,.7,.8,.8, 
                 .1,.2,.2,.2,.2,.5,.7,.8,.9,.9, 
                 .1,.2,.3,.3,.3,.3,.7,.8,.9,.9, 
                  0,.1,.2,.4,.4,.4,.4,.7,.9,.9; 
} 
 
The netCDF model has been extended in order to model a dataset’s location aspects and 
aggregation structures. The following picture depicts the abstract model of an extension. 
 



 
 

Figure 3: Extended netCDF data model 
 

 

The GIS General Feature abstract model 

Both OpenGIS and ISO TC 211 specifications are based on the so-called general feature model; a 
simplified abstract schema of such approach is showed below.  
 

 



Figure 4: GIS general feature model 
 
 

In order to understand the different philosophy that characterises this approach in contrast to the 
previously ones, it is useful to expand the geometry object (i.e. GM_Object). The next figure shows 
a simplified schema of ISO 19107 geometry basic types. These objects are different from the 
implicit geometries used by both VisAD and NetCDF abstract models for representing typical AS 
datasets (i.e. regular and irregular multidimensional grids, or sampled fields). 
 

 
Figure 5: Simplified schema of ISO 19107 geometry basic types 

 
 
 

Another important difference consists in the respective root concepts: data objects for AS models, 
feature objects for GIS model. 
 

GIS meets ASIS: the Coverage concept 
With the advent of new and more powerful remote sensing techniques, and spurred by the 
Information Society’s needs, the GIS community has been working on solutions for “importing” AS 
datasets. Hence GIS data models have been reshaped and extended to accomplish this ambitious 
task. International initiatives (e.g. ISO TC 211 and OpenGIS) have released geo-information 
standard models which conceived to support general interoperability. These efforts lead to the 
definition of “more general” models for geographic information. 
 
Such models distinguish two kinds of geographic information: boundary and coverage data. 
Boundary data is often called "vector data" and is almost always feature-oriented. Generally, AS 
datasets fit into the coverage category and, in most cases, are grid-oriented. 
 



In GIS, the coverage concept can be defined and explained as: a feature that acts as a function to 
return one or more feature attribute values for any direct position within its spatiotemporal domain 
[ISO 19123].  
GIS coverages (including the special case of Earth images) are two- (and sometimes higher-) 
dimensional metaphors for phenomena found on or near a portion of the Earth’s surface. 
Fundamentally, coverages (and images) provide humans with an n-dimensional (where n is usually 
2, and occasionally 3 or higher) “view” of some (usually more complex) space of geographic 
features…. the “view” will be geospatially registered to the Earth… A coverage is a special case of 
(or a subtype of) feature [The OpenGIS™ Abstract Specification Topic 6: The Coverage Type and its Subtypes]. 
 
According to these definitions, it is clear that coverage is a key concept for bridging the gap 
between GIS and AS data models. Nonetheless, the coverage concept is part of the GIS semantics.  
In fact, a coverage is defined as a feature subtype. Hence, it must be characterised by explicit 
geometries.  Meanwhile, AS datasets are generally characterised by implicit geometries, such as 
regular or irregular grid matrices. 
 
In GIS, grids are modelled as a set of geometric objects (e.g. GM_Points, GM_Curve, GM_Surface, 
etc.); besides, DiscreteCoverageFunction objects map each geometric object to a tuple of attribute 
values. 
 
The following schema is a simplified view of the abstract model introduced by ISO 19123 (i.e. 
Coverage geometry and functions specifications) for modelling grid matrixes. 
 



 
 

Figure 6: Simplified view of the abstract model introduced by ISO 19123 
 
Referring to the coverage model, a grid may be defined only with respect to a particular coordinate 
reference system. 
In GIS, the most common grids occur in a two-dimensional space, and are themselves two-
dimensional; three-dimensional grids are not unusual [ISO 19123]. In other words, a simple grid is 
the most common data structure used for storing coverage information in real GIS data models.  
 
AS datasets can be classified as hyperspatial data (i.e. space comprising more than the three 
standard x, y and z dimensions [Oracle's server Spatial Cartridge Glossary]) or multidimensional 
discrete data (MDD). It is also possible to call them Hyperspatial Structured Data (HSD). Generally 
speaking, AS datasets are characterised by the following attributes: 

• high dimensionality (e.g. four or more dimensions: space, time, pressure, etc.);  
• continuous parameters (i.e. the functions composing a dataset) in nature, but sampled 

parameters in acquisition and storage;  
• multivalued parameters: characterised by a tensor rank; for example, a brightness 

temperature parameter can be characterised by several values -one for each of the N 
channels of acquisition- therefore, its rank is equal to N, and the number of its elements 
are dimensionrank. 

 



AS data models, such as the VisAD and NetCDF models, are generally able to represent such data 
complexity.  On the other hand, the only way to reconcile such complex data structures with the 
simple grid model, as presently supported by GIS, it is to convert AS data back to a simple grid 
[ISO 19130]. 
 
In summary, the coverage structure – supported by GIS -- seems to be the best solution available to 
bridge GIS and ASIS data models, but it doesn’t capture the entire complexity of AS datasets.  To 
be fully interoperable in the GIS data environment, AS data must be simplified so they can be 
represented as coverage objects.  In essence this can be seen as a projection from the more complex 
AS data space to the simpler GIS data space. 
 
Regarding semantics, ISO 19129 WD2 -dealing with Imagery Data Framework specification- 
introduced the following Image and Gridded data structure model elements: 

• Geometric structure (e.g. grid metadata), with associated spatial and temporal reference 
systems (e.g. Coordinate Reference Systems metadata); 

• Representational structure (e.g. dataset encoding metadata); 
• Metadata (e.g. source sensor metadata) 

 
Up to now, this metadata doesn’t seem to be sufficient or appropriate for all types of AS datasets 
(e.g. complex forecast model output). 

Implementing abstract data models 
Both GIS and ASIS implement abstract data models (entirely, or just useful profiles of them) in 
order to achieve three essential service/funtionality types: data management (i.e. storing and 
querying), data processing and data visualization. The advent of the Web era, and the new needs 
posed by the Information Society have brought to the fore the importance of another kind of 
characteristic of online data services: interoperability.  The Web and underlying Internet have given 
rise to new, alternative facilities: 

• service-oriented approaches to interacting with data, 
• new data models (e.g. semistructured data models), and  
• augmented communications technologies and protocols (e.g. SOAP/WSDL/XML).  

Exchanging data in a neutral, standard and self-descriptive way has become necessary in order to 
exploit the expanding system of distributed by interconnected computing platforms that are rapidly 
becoming ubiquitous.  Semantic interoperability is becoming more important for ensuring optimal 
synergy among these systems. 
  
It is our opinion that interoperability frameworks (i.e. services and data models) will play a 
fundamental role in the future of GIS and ASIS. data models must represent both the structure of 
the datasets as well as how they will be used.  
The following section briefly covers these topics with respect to GIS and ASIS.  First traditional 
and new data models technologies and environments are considered. Then, common solutions for 
managing and visualising GIS and AS data are introduced.  Finally the data model interoperability 
challenge is discussed. 
  

Data Model Technologies 



Highly-structured database models  

For many decades, business applications for computers involved underlying database 
systems.   Each of these systems tended to have its own model for the data.  In this context, a data 
model is an unambiguous and neutral view of data that consists of a set of concepts used to organize 
the data -- describing its structure so it is comprehensible to the computer applications programs.  

Traditionally, these data models have been studied in database research and development where two 
main classes of data models are distinguished: object-oriented and record-oriented models. In 
addition, there exist different abstraction levels at which data models can be introduced: the 
interoperability/application level, the conceptual/logical level, and the physical level. These three 
levels of data abstraction make it possible to achieve both logical and physical data independence.  

“Standard” data models for databases are:  

• Entity-Relationship model (conceptual model);  
• Relational model (record-based model, SQL standard, logical models);  
• Network and Hierarchical model (legacy models, physical models);  
• Object-Oriented models (e.g., ODMG's object model).  

The WWW semistructured data model 

The advent of the World Wide Web introduced a world of data and information that was not 
organized according to such precise and formal mechanisms.  While the traditional data models are 
useful in dealing with structured data (e.g., data organized in formal databases), they are not as 
successful for representing the Semistructured Data (SSD) of the sort that is found on the web.  

The SSD Web data has the following characteristics [Ramakrishnan]:  

• It cannot be represented completely by formal schemas or types;  
• It generally has an irregular structure and is heterogeneous and deeply nested;  
• Its structure evolves -- often without notice;  
• It can only be accessed through limited capabilities;  
• It has links among datasets stored on distributed servers.  

As the success of the Web has shown, SSD provides a convenient and flexible format for 
exchanging and querying data and information. Moreover, SSD arises in important application 
domains such as scientific data collections and digital libraries where there is a strong demand for 
information and data integration in spite of the fact that the underlying data are not formally 
structured along the lines of the traditional database models. In the language of computer science, 
the data model for the Web’s SSD consists in a rooted, edge-labelled, directed graph (e.g. OEM, 
UnQL).   In layman’s terms, this describes the connections established by the pointers among the 
many documents on the Web.  If you take any one document and follow the pointers in that 
document, then in turn follow the pointers in those documents, you trace what starts out looking 
like a hierarchy of documents, but is not a strict hierarchy because the links can circle back on 
themselves – thus the more general term directed graph is used.   Clearly this sort of constantly 
evolving maze is not easy to represent in a formal database schema.  

A very popular approach for integrating database technology into the Web consists in implementing 
a wrapper module which, on demand, generates SSD in the form of XML documents or HTML 
Web pages from the structured data managed by a traditional database. This approach introduces a 



SSD model at the interoperability level which implements an export view of the conceptual/logical 
model of the database.  

In the example of the Boulder map in the figure above, the various features specified in the legend 
are in fact stored in a relational database and the map is generated by the “Geography Network 
Explorer” which transforms the features into layers in a form viewable within a Web browser.    

Specifying a structure for data accessed via Web services  

While the specific modelling of data using formal database schemas is powerful in the context of 
targeted database computer applications, a more general form of data modelling -- independent of 
specific applications technologies – is needed to facilitate integration and interoperability among 
datasets and computer applications that access and use them in the context of the Web.  

A powerful and standard technology for encoding and exchanging information among computer 
programs on the Web is XML. While it was originally defined as a textual language rather than a 
data model, it is now very popular for data representation and exchange of data among computer 
programs on the Web. However, while XML is an extremely versatile and valuable data transport 
format, experience has shown that -- despite high hopes for it -- XML is mediocre to poor as a data 
storage and access format.  

(While not exactly a data model, a standard Document Object Model (DOM) for XML has been 
defined to enable XML to be manipulated by software. The DOM defines how to translate an XML 
document into data structures and thus can serve as a starting point for an XML data model.)  

In general, the results of data integration, achieved through systems/applications interoperability, 
are semi-structured.  For example, Web-services and e-business technologies use SSD in the form 
of XML documents.  

Geographic data management and visualisation 

Traditional GIS data in relational databases  

In the realm of geolocated datasets, data stored in Geographic Information Systems (GIS) are highly 
structured and most often stored in an underlying relational database.  While this may be a gross 
simplification, GIS datasets typically consist of “features” on the surface of the Earth that can be 
represented by points, lines and polygons. An example is a county plat which can show natural 
features such as streams and rivers, infrastructure like roads and bridges and buildings, and plots of 
land such as towns, lots, and so forth.   The attributes of these features lend themselves to storage in 
the tables of a relational database.  There can be a table for the roads, another for the towns, yet 
another for the rivers, etc.  Each specific feature is a record in a table which provides a very useful 
way of keeping track of the characteristics of each instance of each feature.  

Visualization is conceptualized in terms of a set of “layers.”   In the physical world, transparent 
mylar sheets are often used to overlay various sets of features on a given base map.   The same idea 
is used for manipulating the visualization of the classes of features in GIS visualization systems  



 
 

Figure 7: The example above is a map of Boulder, Colorado displayed from a Web site which is part of 
the GIS-based Geography Network. The legend on the left lists the various classes of features that can be 
displayed on such maps. In this particular case, the underlying GIS technology is an ESRI-based system 
called the Geography Network Explorer, but the data model of overlays of features on the surface of the 
Earth is common to all GIS-based systems. Nearly all such systems also have a relational database in 
which the features are stored according to a specific schema. 

  

Atmospheric science datasets  

Among Atmospheric Science data, one of the most extreme cases is the voluminous datasets output 
by supercomputer forecast modelling programs.   While these are not data in the sense of 
observations, they are among the most important datasets for the climate and weather forecasting 
communities.  

Since these datasets are the results of highly-sophisticated numerical simulations run on powerful 
computers, they are highly structured.  But their structure is quite different from GIS layers one, and 
cannot be successfully modeled by the formal database structures discussed earlier.  And the 
scientist’s conceptual understanding of the datasets differs dramatically from the typical conceptual 
model associated with the traditional GIS collections.   In fact, the forecast modeling community 
does not think of data in terms of features on the surface of the Earth but rather the data are discrete 
points in a continuous function space where many parameters (e.g., temperature, pressure, wind 
speed and direction) vary in three spatial dimensions and time.  This is a natural viewpoint because 



the datasets themselves are generated by numerical solutions to the complicated (e.g., the Navier 
Stokes) equations of fluid dynamics.  

FIGURE 8: The visualization of the jet stream development predicted in the output of a numerical forecast 
model shown above illustrates many of the special characteristics of this type of data. It shows many 
atmospheric parameters varying not only in three spatial dimensions, but in time as well. Moreover there is 
more than one time dimension in that these the forecasts themselves are generated at regular time intervals 
and each such forecast has an associated forecast time scale -- which of course extends into the future if it is 
to be of practical use. In this case, the underlying maps are actually generated from GIS shape files. This 
illustrates integration of GIS data into a visualization of data characteristic of the atmospheric sciences. 

(Note that forecast model output datasets are only one of many classes of data that could be chosen 
to illustrate the challenge of data interoperability in the Earth sciences.   Among the others, are 
satellite images, data from radars, balloon- and aircraft-borne soundings, data from individual 
weather observing stations, swath data from polar orbiting satellites and from shipboard observation 
systems.  For this discussion, the forecast model output has been chosen because, in many ways, the 
conceptual models are the most distinct from those of the traditional database community.)  

These data are structured but are more complex than traditional structured data; as a matter of fact, 
they can be classified as hyperspatial data, or  Hyperspatial Structured Data (HSD).  
Generally speaking, AS datasets are characterised by the following observational nature: 

• high dimensionality (e.g. four or more dimensions);  



• multivalues parameters, characterised by a tensor rank (e.g. a brightness temperature 
parameter can be characterised by several values, one for each acquisition channel; its rank 
is equal to the number of acquisition channels);  

  
Functional mappings are defined and used by scientists to map parameters elements and then 
visualise them. For instance, a four dimensional parameter of rank three is characterised by  43 
quantities [Treinish], which could be visualised and cross analysed. 
  
 Another important aspect -especially for GIS interoperability- is the base geometry used to map 
dataset parameters to earth coordinate systems. These geometries are generally gridded based, but 
also ungridded ones are possible. Among gridded geometries, regular, deformed  and irregular grids 
are present. These grids may be explicitly or implicitly positioned. Topological relationships among 
grid cells are also important.  
Data type are very heterogeneous, e.g. real, complex, integer, etc. Useful data aggregations are 
often utilised: grid cells patterns, multi-grids, time series, fiber bundles, dataset hierarchical trees 
[Treinish].  
  
Traditionally, scientific communities have been using file systems to manage HSD, instead of 
DBMS. Scientific communities use DIFs (Data Interchange Formats), such as: CDF, HDF, CIF etc. 
to store and manage HSD, though such formats were intended for data exchange. Several experts 
still consider such approach more appropriate. As a matter of fact, several GIS are able to directly 
"interface" file systems based on common DIFs. 
  
A research subject for Database science is the utilisation of traditional database models (i.e. 
relational, network and hierarchical) to model HSD, achieving database schemas which can be 
directly used by GIS. Naturally, such technology would be extremely useful to store, query and 
manage HSD in a GIS framework, as well as in any other application context. 
  
Another promising research subject is related to modeling HSD (managed by either DBMS or file 
systems) by means of rooted, edge-labelled, directed graphs  (e.g. encoding HSD in XML). Such 
point is important to work out interoperability models and, therefore, enable applications 
interoperability in the field of Atmospheric Science. Eventually, it is of paramount importance to 
generate web data (e.g. "documents") from HSD, and publish them through DL applications.  

The challenge: data models interoperability  
As the technology of web services accessible by computer programs evolves, the challenge for 
those studying the Earth from an interdisciplinary perspective is to develop interoperable data 
models that can span the specific data models employed in individual disciplines.   Moreover, these 
interoperable models have to be integrated with the semistructured framework of the Web 
itself.   Only in this way will it be possible to develop visualization applications that afford the user 
an integrated view of datasets from different disciplines overlaid on societal and infrastructure 
impacts information from traditional GIS databases.  Furthermore, it is imperative for the systems to 
evolve in such a way that the datasets themselves can be embedded into that semistructured but 
extremely accessible and useful directed graph of documents on the Web.  

Display integration 

Interoperability among datasets can be achieved at several levels. A basic level of interoperability 
will allow two datasets to be visualized in a common view. The results of this level of 
interoperability can be seen in the two integrated images that follow. The first image -- generated 



using GEMPAK (GEneral Meteorological Packag) shows atmospheric science radar data overlaid 
with infrastructure information imported from GIS shapefiles.  

FIGURE 9: In this visualization, both the radar data and the GIS infrastructure data appear as 
if they are "features" on the surface of the Earth. In this case, the visualization was actually 
created by GEMPAK, an atmospheric science analysis and display application. But a similar 
display could be created by a GIS tool because the data are in a common form. 

The following image shows integration in the other direction. In this case a slice of the 
meteorological forecast model output has been transformed so that it can be displayed as a layer in 
the ESRI ArcMap display tool.  



FIGURE 10: This image shows the output of a numerical weather forecast model (the AVN 
or Aviation) model visualized within the ESRI Arcmap GIS application. In this case, the 
integrated view was made possible by a transformation program that takes a horizontal slice 
of the model output and converts it into a geoTIFF form that can be displayed as a layer on 
the underlying GIS map. 

Application analysis interoperability 

GIS data analysis 

However, integration at the display level does not ensure interoperability for data analysis. The 
image below illustrates the type of analysis that can be done if all the data are integrated into a GIS 
structured database form. In this case, the output of a "slosh" model forecasts the storm tide 
associated a hurricane. The storm surge heights are integrated into the GIS system as features on the 
Earth's surface. Combined in the database with information about the number of schools in the 
affected region, one can envision how questions about which counties are forecast to have a storm 
surge of 5 feet or greater. Beyond that, a decision maker can query the database to learn how many 
schools would be affected if those counties closed their schools. With the structured database view 
of data, these inquiries are quite natural. 



 

 

FIGURE 11: These images were taken from a FEMA Mapping and Analysis Center web page at: 
http://www.gismaps.fema.gov/2003graphics/storms/isabel/schools.jpg 

Atmospheric science analysis 



The images in the figure below illustrate a type of analysis possible using the tools of the 
atmospheric sciences where data are seen as discrete points in a multi-variate function space that 
varies in three spatial dimensions and time. In this case, the Vis5D analysis tool has been used to 
trace the trajectories of individual air parcels in time. With the function space data model, these 
foreward and backward trajectory calculations are quite natural, as is the vertical cross-section 
shown in the image on the left. 

FIGURE 12: Visualization of ETA forecast model output showing computed air parcel 
trajectories viewed in vertical (left) and horizontal (right) cross-sections. These trajectories can 
be calculated because, as noted earlier, the atmospheric sciences forecast output is a set of 
discrete points in a mathematical function space. The data can be overlaid on a display that 
includes GIS-type map data (as in the illustration on the right), but the vertical cross section on 
the left is not straightforward in most GIS systems. 

 Conclusions and future directions 

Traditional GIS data models are fit for managing and visualising feature-based datasets, 
characterised by relatively slow time variations. They don't seem to be particularly fit for 
Atmospheric Science data visualisation or management. 

As a matter of fact, it is possible to distinguish different data models which are more effective for 
different functionalities (or services); hence, for example, NetCDF and HDF5 data models are fit 
for data storage and exchange; VisAD data model for dataset visualisation, etc.  

New kind of services (functionalities) are getting more and more important: interoperability 
services. They require data models suited for enabling web service to "understand" and easily 
exchange Atmospheric Science datasets. These data models  must be particularly accurate on 
metadata and encoding model, which enable the effective sharing of data content and meaning, and 
hence the real system interoperability. For example, ESRI's ArcXML, OpenGIS GML (Geography 
Markup Language), ESML and NcML/NcML-G are examples of encoding language, based on a 
semistructured data model, for enabling ASIS and GIS interoperability. 

In our vision, such data models are extremely  useful to achieve applications interoperability (in 
particular GIS and ASIS interoperability). They are useful to interconnect sibling services 
implemented on heterogeneous applications. Besides, they are useful to interconnect 



services/functionalities at different levels -e.g. implemented in a distributed service framework- 
which require diverse and specialised data models; for example, data management, exchanging and 
visualisation services.  

Leveraging such middleware, it could be possible to achieve a distributed service framework which 
uses: 

• VisAD model for datasets visualisation services; 
• HDF 5.0 or NetCDF with extensions for dataset exchange and storage; 
• WCS 1.0 and GML 3.0 for GIS interoperability. 
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