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1. INTRODUCTION

Performance measures, such as the threat score,
are widely used as summary measures of forecast
quality.  Depending upon the type of forecast being
issued, whether continuous or categorical, probabilistic
or deterministic, there are a variety of measures from
which to choose.  For example, the Environmental
Modeling Center (EMC), a part of the National Centers
for Environmental Prediction (NCEP), primarily uses
equitable threat and bias scores to quantify the
performance of precipitation forecasts from numerical
guidance.  Forecasters, managers, and users of forecast
information require verification information in order to
answer several questions: “How are the forecasts
performing? How can future forecasts be improved?
How does one forecast system compare to another?”
The validity of verification information that is used to
answer such questions depends upon the characteristics
and sensitivies of the scores used.

Typical performance measures provide
information on a single aspect of forecast quality:
forecast accuracy.  Accuracy is related to how well the
forecasts correspond to the observed truth.  Accuracy is
one of the many aspects of forecast quality (Murphy
1993) provided by the joint distribution of forecasts and
observations that must be analyzed in order to obtain a
complete diagnosis of verification information.  However,
the distributions-oriented approach is rarely used in
practice due to the complexity and high dimensionality of
the joint distribution of forecasts and observations.
Instead, accuracy measures are often used as a
substitute to provide an overall summary of the forecast
quality (called the measures-oriented approach by
Brooks and Doswell 1996).  

When selecting an accuracy measure, one must
understand the characteristics of the score.  What are
the types of errors that the score is most sensitive to?
Does the score encourage biased forecasts?  Are false
alarms punished more (or less) than missed events?
Does the score behave in the same way for rare events

as it does for more common events?  Sensitivities of this
type for accuracy measures have been considered by
several reserachers over the past several decades.

Mason  (1989) examined the sensitivity of the
threat score (critical success index) to the observed
event frequency as well as the decision threshold, which
can be related to the frequency bias.  His results showed
that the threat score is highly sensitive to both factors.
Common events result in higher threat scores than rare
events, and the threat score is maximized for bias values
greater than 1 (overforecasting).  Hamill (1999)
discussed the implications of these sensitivities in
determining confidence intervals (error bars) for the
threat score.  Other researchers have proposed
modifications to the threat score to attempt to reduce the
sensitivity to forecast bias and event frequency
(Schaefer 1990; Mesinger and Brill 2004).

Other researchers have focused on the “fairness”
of scores.  For example, an accuracy measure is defined
as equitable by Gandin and Murphy (1990) if the same
score (usually zero) is given to either a random or
constant forecast.  Equitable scores do not encourage
over- or under-forecasting of an event, therefore one
assumes that the score will be maximized when the
frequency bias is equal to 1.  However, Marzban (1998)
could not find an equitable score for rare events under
realistic forecast conditions. Only a few scores are
maximized when bias = 1 under very specialized
conditions; when the variance of forecast values
associated with “no” events is equal to that associated
with “yes” events.

A broader question is: for what forecast situations
should scores be maximized for bias = 1?   This will
depend on how the forecasts are used and how different
outcomes affect the user of the forecast.  This relates to
the issue of forecast value.  Forecast value is defined by
Murphy (1993) as the benefits of forecast information to
a user of the forecast.  Each user will have a different
level of sensitivity to false alarms and missed events,
depending on their individual situation.  For certain
situations, a biased forecast may, in fact, be more
valuable than an unbiased foreacst.  Thornes and
Stephenson (2001) provide an example of the
complicated relationship between forecast bias,
accuracy, and value for a winter weather forecasting



situation.   The cost/loss situation for a city deciding
whether or not to treat slippery roads was analyzed for
two competing forecast providers.  Thornes and
Stephenson (2001) found that a forecast provider with a
bias of 1.8 resulted in greater value to the city than one
with a bias of 1, even though other accuracy measures
(percent correct, false alarm rate) showed the unbaised
forecast to be preferred.  One might question whether
forecasters should be concerned with forecast value,
since they have no control over the decisions made by
the users of forecast information.  Since typical forecasts
(of hazardous weather in particular) provide only yes/no
information, it is up to those that issue such forecasts to
consider their value for the variety of users.  End-users
of forecast information would likely find verification
information related to forecast value to be quite useful.

Ideally, one might desire to decompose forecast
errors into separate independent factors. For example,
Murphy (1996) shows how scores related to the mean
square error can be decomponsed into components due
to bias, reliability, and resolution.  For spatial forecasts in
particular, one could consider several components of
forecast error.  Ebert and McBride (2000) describe a
technique to decompose errors in precipitation forecasts
into components due to displacement, amplitude (bias),
and shape errors.  In this paper, we address spatial
forecast errors such as those associated with numerical
forecast precipitation.  The sensitivity of several
measures of accuracy to bias and displacement errors
will be examined for a hypothetical forecasting situation.

2. HYPOTHETICAL FORECAST SITUATION

The spatial forecast situation, such as one might
face when forecasting precipitation greater than a given
threshold, will be modelled using a simple hypothetical
example.  Here, regions of forecast and observed “yes”
fields will be represented by circular shapes. The
observed circle will have a radius = ro (fixed ro = 1), the

forecast circle will have a radius = rf and the circles will

be displaced by a distance = D (Fig. 1). Since the area of
the observed circle is fixed, the bias error will be varied
by varying the radius of the forecast circle.  As can be
seen in figure 1, the frequency bias (B = frequency of
forecast = yes divided by frequency of observed = yes)
simplifies to rf*rf (since ro = 1).  For a fixed forecast circle

(or fixed B), as D increases, the area of overlap will
decrease until it reaches zero at D = ro+ rf.  For a fixed

displacement D, as the bias increases, the overlap area
will increase until the forecast circle envelops the
observed circle completely.  The observed event fre-
quency is the ratio of the observed area to the total fore-
cast domain.  The bias cannot be larger than the inverse

of the event frequency.
Since this is a binary (yes/no) type of forecast, it

can be verified through the use of a 2x2 contingency
table.  The scores that will be analyzed in this paper will

be defined through the use of this table:

In this paper, we will show how a variety of scores
vary as a function of bias and displacement errors.
Therefore, the various elements of the contingency table
must be computed as a function of B and D.  Given the
forecast and observed circle areas (defined by their
radii), the area of the intersection, and the frequency of
the observed event, each element of the contingency
table can be computed analytically.  The intersection of
the forecast and observed circle represents the “hit” area
a:

Since the radius of the observed circle is fixed at
1.0, using the definition of the frequency bias, this
equation can be simplified and written to be a function of

Figure 1: A hypothetical example of a spatial forecast and associated
observation. The radius of the observed circle (ro) is fixed at 1, the radius
of the forecast circle is rf, the distance between the centers of the
observed and forecast circles is D.  The area of overlap between the
observed and forecast circles is a (forecast = yes & observed = yes).
The frequency bias, or ratio of the forecast and observed areas, is B.
The total forecast domain is indicated by the outer rectangle. The
elements of the contingency table are indicated by the corresponding
area on the figure (b: forecast = yes & observed = no, c: forecast = no &
observed = yes, d: forecast = no & observed = no).
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bias and displacement errors:

The area of the observed “yes” circle is:

and the area of the forecast “yes” circle is:

Therefore, the b and c contingency table elements can
be written in terms of D and B:

where a is defined above.  Finally, the d element
(forecast = no and observed = no) depends upon the
size of the total forecast domain, which in turn controls
the frequency of the event, p. The sensitivity of scores to
this factor will also be examined. 

 

3. DEFINITION OF ACCURACY MEASURES

Several commonly used measures of forecast
accuracy will be examined.  The elements of the 2x2
contingency table have been computed in terms of bias
and displacement errors for the hypothetical situation
described above.  The definitions of these scores are as
follows:

Since these scores are fairly common, only a brief
description and associated references will be provided
here.  POD is simply the fraction of the observed events
that were correctly predicted.  TS is the fraction of the
observed and predicted events that were correct (Gilbert
1884 called this the “ratio of verification”).  ETS adjusts
the threat score to remove the number of correct yes
forecasts expected due to random chance (Schaefer
1990 called this the “Gilbert skill score”).  TSS is the
probability of detection minus the probability of false
detection (Doswell et al 1990 called this the True Skill
Statistic, while Peirce 1884 may have been the first to
discover it; it has also been called the Kuipers
performance index and the Hanssen-Kuipers
discriminant).  HSS is similar to the ETS, except it is the
fraction of both the correct yes and no forecasts divided
by the total forecast domain, with the correct forecasts
adjusted to remove those expected by random chance.
ODDS is a function of the odds ratio and varies from -1
to 1, a random forecast results in ODDS = 0 (Stephenson
2000).

Two other scores are also included which are
related to forecast value.  The value of a forecast
depends upon user requirements.  Thompson and Brier
(1955) proposed the use of a simple cost/loss ratio for
estimating value.  The first score is a modified version of
the threat score by Donaldson et al. (1975), who
introduced a k factor to the TS formula, which the false
alarm element in the contingency table was divided by.
This factor was meant to represent the loss/cost ratio,
since the cost/loss ratio is typically presented in analysis
of value, we have modified the definition to use the cost/
loss (C/L) ratio directly:

The second score, called the value index
(Thornes and Stephenson 2001) is a simplified way of
estimating the relative value of a forecast.  In the 2x2
contingency table, the expenses due to protective action
(cost=C) and the expenses resulting from damage due
to the weather event and no protective action (loss=L)

are given in Table 2. 
One assumes that protective action is taken

whenever the forecast is “yes” for the observed event.
The cost of protective action is = C.  If no protective
action is taken and the observed event occurs, the
resulting loss = L.  If no event occurs and no protective
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action is taken, there is no expense.  Therefore, the total
expense resulting from the use of a forecast with errors
found in the contingency table are:

The relative value of a forecast is the benefit
(expense savings) of using a forecast divided by the
benefit provide by a perfect forecast:

For a perfect forecast, all observed events are correctly
forecast, therefore a=p.  The expenses associated with a
perfect forecast are:

In this work, we assume that a user with no forecast
information takes action depending upon the
climatological frequency of the event.  If the event occurs
frequently relative to the cost/loss ratio, the user will
always take action to protect.  No losses will occur, but
the expenses will be due to the cost of protection (N*C).
If the event is rare relative to the cost/loss ratio, the
expenses will be less if the user never takes protective
action.  Expenses will occur as losses for each observed
event.  Therefore, the expenses associated with no
forecast information depend on p and C/L:

 if  

 if  

Using these expenses, the value index functions
become:

 if  

 if  

4. RESULTS

Figures 2 and 3 show how various accuracy
measures vary as a function of bias and displacement
errors for a somewhat rare observed event (p=0.05).

This event frequency is similar to fractional area of
preciptitation observed greater than 0.5” analyzed to a
40km x 40km grid box across the contiguous 48 states
during the warm season.  For a fixed displacement error,
the POD increases as bias increases, which is expected
since the forecast circle enlarges until it eventually
“swallows” the observed circle and POD=1.  For a fixed
bias error, the POD decreases as displacement error
increases, since the circles are moving away from each
other the overlap area will eventually decrease to zero.
TS and ETS are practically equivalent for rare events,
and have similar behavior as HSS.  The maximum score
is found for B>1 for all D>0, and the B that is associated
with the maximum score increases as D increases.  TSS
has a similar behavior, except the maximum score axis
increases linearly in B as D increases.  ODDS cannot be
computed if the b or c elements are zero, such as the
case when POD=1 or there are no false alarms (the
situation where the forecast circle is completely
contained within the observed circle, for small values of
B and D).  ODDS appears to be less sensitve to changes
in B than the other scores.

Figures 4 and 5 show the various accuracy
measures as a function of bias and displacement errors
for a somewhat more common event (p=0.33).  This
event frequency is similar to that observed for
precipitation greater than 0.01” analyzed to a 40km x
40km grid box.  As expected, for a fixed displacement
error, the POD increases as bias increases.  TS and ETS
are considerably different for common events. The
maximum score axis for TS slopes in the positive B
direction, as it did for the rare event. However, the
maximum score for ETS is fairly constant and near B=1.
For a fixed D, ETS appears to be less sensitive to
changes in B for common events.  HSS and TSS behave
similarly to ETS.  Again, ODDS is quite different from the
other scores, with little if any variation in score for fixed D
as B changes.  For most of these scores in the common
event case, the scores appear to be fairly insensitive to
bias and produce maxima near B=1.

Figure 6 shows the value-related measures as a
function of bias and displacement errors for a relatively
low cost/loss ratio = 0.1.  The top panels are for a rare
event (p=0.05) and the bottom panels are for a common
event (p=0.33).  For the low cost/lost ratio situation,
CSIK and VALUE provide consistent information, with a
maximum value axis sloping in the positive B direction.
This indicates that for forecasts with any displacement
error, a frequency bias greater than 1 will provide a more
valuable forecast.  The accuracy measures in figure 2
provide information consistent with the value for the rare
event situation.  However, except for the TS, the
accuracy measures in the common event situation show
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that the maximum accuracy is associated with B=1,
while the maximum value is obtained for forecasts with
B>1.  These plots indicate that users in the low cost/loss
ratio situation are very sensitive to missed events.  The
cost of taking action is relatively low, therefore false
alarms are not punished as much as missed events.
Therefore, a forecast with a large bias is considered
valuable in this situation.

Figure 7 shows the value-related measures as a
function of bias and displacement errors for a relatively
high cost/loss ratio = 0.5.  Again, the top panels are for a
rare event (p=0.05) and the bottom panels are for a
common event (p=0.33).  For the high cost/lost ratio
situation, CSIK and VALUE do not provide consistent
information.  CSIK is very consistent with the TS plots in
figures 2 and 3, with a maximum score axis sloping in
the positive B direction.  However, the VALUE plots
indicate the opposite behavior, as D increases, the
maximum value is provided for smaller and smaller bias
errors.  This indicates that for forecasts with any
displacement error, a frequency bias less than 1 will
provide a more valuable forecast.  The high cost/loss
ratio situation is associated with users that are very
sensitive to false alarms, taking action when no event is
observed is very costly to this type of user.  To reduce
the number of false alarms, a forecast with low bias must
be produced.  This is true in both the rare event and in
the common event situations.  None of the accuracy
measures in figures 2 and 3 provide information
consistent with the value for the high cost/lost ratio
situation.

5. SUMMARY

No single score can provide perfect information
on forecast quality to satisfy all types of users.  The
sensitivity of various measures of forecast accuracy and
value is analyzed for a hypothetical forecast situation.
Most scores are found to be quite sensitive to bias error,
event frequency, and displacement error.  The odds ratio
skill score is the least sensitive to bias error and event
frequency.  For rare events with any displacement error,
accuracy measures are maximized for bias greater than
1.  For common events, most of the scores are
maximized at bias = 1 over a wide range of displacement
errors.

Most accuracy measures, as well as the modified
CSI of Donaldson et al. (1975) provide information that is
consistent with value for rare events and low cost/loss
ratios.  For common events, the TS and modified CSIK
provide information consistent with value.  However, in
the high cost/loss ratio situation, none of the accuracy
measures provide information consistent with the

estimate of value. 
For low cost/loss ratio users, missed events are

critical, therefore a forecast with a high bias provides
more value than an unbiased forecast.  The opposite is
true for high cost/loss users, false alarm errors are the
most critical, therefore a forecast with low bias provides
more value than an unbiased forecast.
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Figure 2: For event frequency p=0.05, accuracy measures as a function
of bias error (B) and displacement error (D) for the circle-circle interaction
situation.  Top panel is POD, middle is TS, bottom is ETS.  Axis of
maximum score value is indicated by x’s.
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Figure 3: As in figure 2, except top panel is HSS, middle panel is TSS,
and bottom panel is ODDS.
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Figure 4: As in figure 2, except for p=0.33.
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Figure 5: As in figure 3, except for p=0.33.
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Figure 6: Value-related scores for C/L=0.1 as a function of bias and
displacement errors.  Top panel is CSIK, second panel is VALUE for
p=0.05, third panel is CSIK, bottom panel is VALUE for p=0.33.
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Figure 7: As in figure 6 except for C/L=0.5.
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