
7.7  HIGH RESOLUTION FUTURE SCENARIO CLIMATE DATA FOR NORTH AMERICA 

David T. Price1∗, D. W. McKenney2, P. Papadopol2, T. Loganl, M. F. Hutchinson3 
1 Canadian Forest Service, Edmonton, Alberta dprice@nrcan.gc.ca; tlogan@nrcan.gc.ca 

2 Canadian Forest Service, Sault Ste. Marie, Ontario dmckenne@nrcan.gc.ca; ppapadop@nrcan.gc.ca 
3 Centre for Resource and Environmental Studies, The Australian National University, Canberra, Australia 

 

                                                          
∗Corresponding author address: David T Price,  
Canadian Forest Service, Edmonton, Alberta.  
e-mail: dprice@nrcan.gc.ca 

1 ABSTRACT 

Eight monthly climate scenario data sets covering 
North America at ~10 km resolution were constructed 
using General Circulation Model (GCM) output from 
four models (Canadian CGCM2, UK HadCM3, 
Australian CSIRO Mk2 and European Union ECHAM4). 
Each data set included a projection for the period 1991-
2100, forced by one of the IPCC SRES A2 and B2 
emissions scenarios. GCM variables were monthly 
precipitation and solar radiation, mean vapour pressure 
and wind speed, and mean daily minimum and 
maximum temperatures. Data were first normalized to 
differences (temperature), or ratios (other variables), of 
the means for the simulated period 1961-90. These 
monthly “delta” terms were then interpolated as 
functions of latitude and longitude using thin-plate 
smoothing splines as implemented in ANUSPLIN. The 
resulting spline surfaces were used to create monthly 
grids at 0.08333º latitude/longitude resolution. These 
were combined with interpolated maps of observed 30-
year climate normals, to produce physically consistent 
gridded scenarios of future climate. Each combines 
spatial variability observed in present-day climate with 
the spatio-temporal variability simulated by one GCM. 
Averaged across North America, results (reported here 
for temperature and precipitation only) reveal quite 
consistent long-term trends, particularly in the GCMs’ 
differential responses to the A2 and B2 emission 
scenarios. The scenarios differ more in their projections 
of interannual variability, both compared to historical 
data and in their responses to greenhouse gas forcing. 
Maps of selected data at 0.5º resolution reveal rich 
spatial structure dominated by elevation effects on 
observed climate, but vary in details due mainly to 
differences among the GCMs. The data sets will be 
useful for assessing impacts of transient changes in 
climate on ecosystems and other studies where long-
term projections of future climate are required.  

2 INTRODUCTION 

The potential broad-scale (i.e., regional to global) 
impacts of climate change on natural ecosystems can 
only be investigated using spatially distributed 
ecosystem process models that respond realistically to 
climatic factors. While the development of suitable 
ecosystem models is an active area of research, at 
some stage it is necessary to drive these models with 
plausible forecasts of future climate. This objective can 

be addressed in several ways, depending on the 
questions being posed and the type of model being 
used (e.g., see discussion by Bugmann et al., 2000), 
though for many purposes, the most plausible forecasts 
of future climate originate from simulations carried out 
using general circulation models (GCM). 

Several approaches to creating scenarios of future 
climate from GCM data are in use. These include 
statistical and dynamical downscaling and the use of 
Regional Climate Models (RCM), as well as statistical 
interpolation. RCMs are fully dynamical models driven 
by lateral boundary conditions imposed by a “host” 
GCM (e.g., Laprise et al. 2003). Other downscaling 
methods attempt to correlate large-scale atmospheric 
processes to local scale meteorology and apply this 
information to GCM projections of future weather 
patterns to characterize future local scale climate, e.g., 
Statistical DownScaling Model (SDSM) of Wilby et al. 
(1998, 2002). Such approaches attempt to maintain 
physical consistency with the GCM representations of 
atmospheric processes, and can generate high 
frequency simulated meteorological data suitable for 
many applications (e.g., to drive agricultural crop 
models). At present, however, they are generally too 
computationally expensive for routine production of 
multiple scenarios covering large regions over periods 
of several decades or centuries. 

Statistical interpolation of GCM output is a simpler 
approach to obtaining estimates of climate variables at 
locations between climate stations. Although lacking the 
physical detail of dynamical downscaling or RCMs, 
these methods develop physically-based statistical 
relationships that can be applied over large regions to 
provide scenario data sets that both capture the climate 
change signals simulated by the GCM, and remain 
spatially and temporally consistent among variables 
(see also discussion in Houser et al., 2004). Moreover, 
the GCM data can be normalized to remove bias and 
hence make the scenarios broadly consistent with 
observations.  

 Nalder and Wein (1999) reviewed several 
conventional methods of interpolating climate 
observations, while Price et al. (2000) performed a 
rigorous comparison of Nalder’s GIDS method with the 
thin plate smoothing spline routines (ANUSPLIN) of 
Hutchinson (2000) applied to extensive regions within 
Canada. These studies demonstrated that mean 
monthly climate data can be interpolated quite 
accurately where climate station observations are 
lacking, and that the expected error in the interpolated 
estimate can be quantified.  
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One attraction of statistical interpolation for 
downscaling GCM scenario data is that it allows rapid 
construction of data sets suitable for driving ecological 
models at spatial resolutions comparable to major 
landscape features, soil polygons and small catchment 
basins. These data sets are comparable to those 
available from RCM simulations (50 km or less), but 
they can be created using GCM data available freely 
from sources such as the Intergovernmental Panel on 
Climate Change (IPCC) Data Distribution Centre (DDC) 
[see http://ipcc-ddc.cru.uea.ac.uk/dkrz/dkrz_index.html]. 

Downscaled GCM data have been used in large-
scale simulations of responses of vegetation to future 
climate in the USA and Canada, but to our knowledge, 
no studies covering all of North America have yet been 
reported. Furthermore, many of the regional 
simulations, particularly those carried out in Canada, 
have not used the same climate data, even where GCM 
or regional climate model (RCM) output were available, 
thus making it difficult to compare the results of these 
studies. To date, most national-scale studies for 
Canada (e.g., Rizzo and Wiken 1992; Lenihan and 
Neilson 1995) have been based on equilibrium 
projection simulations (i.e., static vegetation responding 
to a stable climate). Such studies cannot capture the 
transient effects of ecological processes that will likely 
respond to variations and long-term trends in climate. 
More recently, the Intergovernmental Panel on Climate 
Change supported simulations for Canada based on 
transient climate projections obtained from fully-coupled 
GCMs (Neilson, 1998). The VEMAP project (VEMAP 
members, 1995) similarly compared national scale 
impacts of climate change on vegetation attributes in 
the USA using a suite of different climate scenarios 
derived from GCM simulations (see also Kittel et al. 
1997).  

Here we report the development of a consistent set 
of climate scenarios, derived from four different GCMS, 
and two IPCC SRES emissions scenarios, covering the 
entire area of continental North America at ~10 km grid 
resolution. These scenarios are based on statistical 
interpolation of present-day climate observations, 
including elevation effects, combined with interpolation 
of GCM simulation data to capture the “climate change 
signal” due to increases in atmospheric greenhouse 
gases (GHG). Each of these eight scenarios provides, 
for the given projection of GHG and aerosol emissions, 
a consistent climate data set on a monthly time interval, 
extending for the period 1961-2100—although where 
data were available for the period prior to 1961, these 
are also provided. The scenario data themselves are 
interpolated differences (in the case of temperature) or 
ratios (in the cases of radiation, precipitation, wind and 
vapour pressure) referenced to the respective 
simulated means for the 1961-90 period. These data 
were treated as anomalies for each variable and 
combined with grids of interpolated monthly mean data 
for North America for the same 1961-90 period. The 
scenarios so generated thus provide a set of spatially 
detailed, and internally consistent, projections of 
changes in North American climate relative to 1961-90, 
as captured by several state-of-the-art GCMs.  

3 DATA AND METHODS 

3.1 Baseline climate data 

Climate records for several thousand stations 
across North America were combined into single data 
sets for a variety of analyses. These included 1961-90 
monthly mean daily maximum and minimum 
temperature (Tmax and Tmin, respectively), precipitation, 
windspeed and relative humidity. Monthly mean 
surface-incident solar radiation data were combined for 
56 Meteorological Service of Canada stations and data 
available for 55 stations from the US National Energy 
Research Laboratory. For each variable, ANUSPLIN 
was used to generate regular grid spatial models. Most 
of these involved treating station latitude, longitude and 
elevation as independent variables. For example, solar 
radiation was developed as a rainfall-dependent 
surface with, rainfall acting as a surrogate for 
cloudiness (see Hutchinson, 2000). Although vapour 
pressure (e) was the preferred humidity variable, these 
data were not available from the US National Climate 
Data Centre. Instead, monthly mean relative humidity 
data were interpolated to the 0.0833º latitude/longitude 
grid, and later converted to estimates of vapour 
pressure. Details on these models will be reported 
elsewhere but many can be viewed interactively at 
http://www.glfc.cfs.nrcan.gc.ca/landscape/climate_mod
els_e.html. 

3.2 GCM data: downloads and pre-processing 

Data were downloaded for four GCMs (Canadian 
Climate Centre for Modelling and Analysis (CCCma), 
CGCM2, UK Hadley Centre HadCM3; Australian 
CSIRO Mark 2 GCM; and Max Planck Institut für 
Meteorologie ECHAM4) for two IPCC SRES emissions 
scenarios (A2 and B2, see IPCC, 2000). In each case, 
the data sets included six monthly climate variables 
(maximum and minimum temperature, [Tmax and Tmin, 
respectively], precipitation, total downward solar flux at 
surface, wind velocity (2 m or 10 m height) and a 
humidity variable. In the case of the CGCM2, for which 
multiple “ensemble” runs had been performed with 
different initializations, only results for the second run 
were used.  

A procedure was developed to standardize, as far 
as possible, the extraction of the GCM scenario data for 
each climate variable and to reorganize them into a 
format suitable for input to ANUSPLIN (see below). To 
develop the higher resolution spline models, each GCM 
grid node was treated as if it was a climate station, with 
each line of input data containing grid node longitude, 
latitude and elevation (the latter taken from the GCM 
orography file, but not used in the procedures reported 
here), followed by 12 monthly data values. A custom 
program, GCM_PROCESSOR2 (first reported in Price 
et al., 2001), was then used to remove GCM bias 
(relative to observations) in a two-pass procedure. On 
the first pass, 30-year means were calculated for each 
month during the simulated period. On the second 
pass, the mean simulated values for each month in 
1961-1990 were then either subtracted from (Tmin and 
Tmax), or divided into (other variables), the modelled 
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monthly data to generate the delta values (or simulated 
monthly anomalies) for the entire simulation period.  

In the particular case of humidity data, the 
preferred measure was vapour pressure, which 
required conversion from other measures that differed 
among the GCMs: CGCM2 and CSIRO both report 
specific humidity; HadCM3 reports relative humidity and 
ECHAM4 dewpoint temperature. Because vapour 
pressure is elevation-dependent, it was necessary to 
download modelled sea-level pressure data to provide 
barometric corrections. A second custom program, 
ANU_HUM, was written to perform the conversion of 
humidity data for each GCM to vapour pressure units.  

The details of the preprocessing procedures varied 
amongst the different GCMs, and are outlined in the 
following sections. 

3.2.1 CCCma CGCM2 
Input data were downloaded from the Canadian 

Centre for Climate Modelling and Analysis (CCCma) at 
http://www.cccma.bc.ec.gc.ca/data/cgcm2/cgcm2.shtml 
This website allows regional subsets to be extracted 
online. Each file was obtained in a 6-column floating 
point ASCII format, with each monthly time step 
separated by a header line. The subset domain grid 
was in geographic projection, with nominal cell 
dimensions of 3.75º longitude × 3.71º latitude, covering 
the region 168.75º to 52.50º W, 16.70º to 83.48º N (32 
cells E-W by 19 cells N-S) covering North America and 
part of Greenland. CGCM2 runs for each IPCC SRES 
scenario consist of a common period 1900-1990 (as 
used for the IS92A “greenhouse gas (GHG) plus 
aerosol” integration), followed by separate simulations 
for 1991-2100. Data for 1990 were removed from each 
of the A2 and B2 datasets, and the GHG+A and A2 or 
B2 datasets then concatenated to create a single 
dataset for each of the A2 and B2 scenario simulations 
for 1900-2100. 

Vapour pressure data were derived from specific 
humidity and sea-level pressure data downloaded from 
the CCCma website. The conversion algorithm 
consisted of the following steps: 

 
1. Read in Tmin, specific humidity (q, kg kg-1) and sea-

level pressure (hPa) for each GCM gridpoint. 
2. Adjust sea-level pressure to “surface pressure” at 

the elevation given by the CGCM2 orography data, 
using equation from R.L. Snyder at http://biomet. 
ucdavis.edu/conversions/humidity_conversion.htm] 

P(z) = P(0)/[(1.0 - 0.0065z/293.0)5.26] [1] 

where P(z) is the atmospheric pressure at elevation 
z (metre), and P(0) is the pressure at sea-level 
obtained from the CGCM2 data archive.  

3. Calculate vapour pressure, e, from specific humidity 
and surface pressure using:  

e = P(z) q/[0.622(1.0 – q(1.0 – 1.0/0.622))] [2] 

where 0.622 is the ratio of the molecular weights of 
water vapour to air. 

4. Calculate saturation vapour pressure e* (kPa) at 
Tmin using polynomial equations of Lowe (1977). 

5. Ensure that vapour pressure does not exceed e* at 
Tmin, as determined by CGCM2 for the grid cell. This 
requires that the value of e* also be adjusted to the 
elevation obtained from the CGCM2 orography 
data. I.e., 

e(z) = min{ e, e*(Tmin) P(z)/P(0) } [3] 

The resulting vapour pressure data were then 
normalized and interpolated as for all other GCM 
variables.  

3.2.2 UK Hadley Centre HadCM3 
Data were downloaded in GRIB format from the 

IPCC DDCData Distribution Centre web site, with 
topography and grid information and the GRBCONV 
program source code (for Sun Solaris 2.5) [found at 
http://www/dkrz.de/ipcc/ddc/html/HadleyCM3/hadcm3. 
html] The GRBCONV program was used to convert the 
data files from GRIB format to the more conventional 6-
column floating point ASCII. The download site does 
not offer the option to subset the data based on an area 
of interest, so a custom program GCM_SUBSET was 
used to extract the data for the region of interest. The 
HadCM3 topography data were used to construct files 
containing longitude, latitude and elevation information, 
with cell dimensions 3.75° longitude and 2.5° latitude, 
covering the region from 168.75º to 52.50º W, 15.00º to 
85.00º N (32 cells E-W by 29 cells N-S).  

The Hadley Centre performed separate integrations 
with the HadCM3 for each of the IPCC SRES A2 and 
B2 scenarios for the entire period 1950-2099. Hence, 
the data HadCM3 interpolated for 1950-1990 also 
differed between the two scenarios—which had an 
important implication when comparing the results.  

In the particular case of the wind speed field for the 
HadCM3 model, the grid nodes are located midway 
between the latitudinal coordinates of the grid nodes 
used for the other variables, so a separate set of 
coordinates was built: from 168.75º to 52.50º W, and 
from 13.75º to 86.25º N (32 cells E-W by 30 cells N-S).  

Vapour pressure data were estimated from the 
HadCM3 relative humidity field using the following 
algorithm: 

 
1. Read in Tmin and Tmax, and calculate the mean of 

these values (Tmean). 
2. Read in relative humidity (RH) data (percent).   
3. Calculate saturation vapour pressure e* (kPa) at 

Tmean using Lowe (1977).  
4. Calculate monthly mean vapour pressure, e, from 

e = e*(Tmean)(0.01RH)  [4] 

5. Ensure that vapour pressure does not exceed e* at 
Tmin, as determined by HadCM3 for the grid cell, 
using Eq. 3.  

3.2.3 CSIRO Mk2 GCM 
Detailed description of the Australian CSIRO 

Atmospheric Research Laboratory GCM is available at 
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http://www.dar.csiro.au/publications/hennessy_1998a.ht
ml#ccm ). Data were downloaded from the IPCC DDC 
web site for five variables (Tmax, Tmin, in Kelvin, 
precipitation, incident solar radiation and windspeed). 
Surface specific humidity data were not available from 
the DDC but were instead requested directly from 
CSIRO in Melbourne (Tony Hirst, CSIRO Atmospheric 
Research, 2003, pers. comm.), together with sea-level 
pressure and Tmin data. As a check, the Tmin data 
downloaded from DDC was compared to those 
received directly from CSIRO and found to be identical.  

As with HadCM3, subsetting was not possible 
online. All data were received in GRIB format for the 
years 1961-2100. GRBCONV was then used to convert 
these to 6-column ASCII and GCM_SUBSET was used 
to extract data for the North American region. 
Coordinate data were extracted from the CSIRO Mk 2 
topography information: cells have nominal dimensions 
of 5.6° longitude by 3.2° latitude so the domain 
extended from 168.75° to 50.625° W and from 14.3357° 
to 87.5613° N (24 cells E-W by 21 cells N-S).  

As with CGCM2 and HadCM3, the time-series data 
were split into two periods with the first 30 years (1961-
1990) common to the integrations for both the IPCC A2 
and B2 emissions scenarios. 

Surface specific humidity were used to calculate 
vapour pressures at the grid cell elevation, exactly as 
was done for CGCM2 (eqs. 1-3). 

3.2.4 Max Planck Institute (MPI) ECHAM4 
As with HadCM3 and CSIRO Mk 2, data were 

downloaded in GRIB format from the IPCC DDC web 
site. ECHAM4 grid cells have dimensions of constant 
width but vary in the latitudinal dimension from 2.7906º 
at the Equator to 2.7673º at the poles. Hence, the North 
American subset area extended from 168.75º to 50.62º 
W and from 15.35º to 85.09º N (43 cells E-W by 26 
cells N-S).  

Monthly mean data were available for precipitation, 
surface-incident solar radiation, windspeed, dewpoint 
temperature and mean sea level pressure for the A2 
and B2 emissions scenarios for 1991-2100, together 
with topography and grid information. A GRIB format 
processing program was also obtained from http://cera-
www.dkrz.de/IPCC_DDC/SRES/ECHAM4/echam4opyc
3.html.  

Screen temperature data (Tmin and Tmax) were not 
available from IPCC-DDC, however, with a note on the 
website stating that prior to 23/10/2002 these data were 
erroneous. A request was made to CERA (Max-Planck 
Institute), and granted, for access to their on-line 
database at http://cera-www.dkrz.de/CERA/index.html 
to acquire the most recent Tmin and Tmax data.  

Following advice from H. Luthardt (MPI, 2003, pers. 
comm.), the ECHAM4/OPYC3 GHG + sulphate aerosol 
experiment from MPI (MP01GS02 simulation) was 
selected as the integration for the period 1900-1990, for 
which data were also downloaded from IPCC-DDC and 
from CERA. These were inserted into each of the A2 
and B2 integrations to make complete time series for 
the period 1990-2100. GCM_SUBSET was then applied 
to each data set, followed by GCM_PROCESSOR2 to 
convert the data to differentials from the means of the 
simulated 1961-1990 period.  

Vapour pressure data were calculated from the 
dewpoint temperature data using ANU_HUM. In this 
case, the algorithm consisted of the following steps:  

 
1. Read in screen-height Tmin (K), and dewpoint 

temperature (Tdew, K) data.   
2. Read in sea-level pressure data (in Pa), and adjust 

to surface pressure at the elevation given by the 
ECHAM4 orography, using eq. 1. 

3. Calculate saturation vapour pressure, e * (kPa) at 
Tdew, taking this as the monthly mean vapour 
pressure.  

4. Ensure that vapour pressure does not exceed e* at 
Tmin, as determined by ECHAM4 GCM for the 
gridpoint, i.e., 

e(0) = min{ e*(Tdew), e*(Tmin) } [5] 

where e(0) indicates vapour pressure at sea level. 
In this particular case, because e* will remain 
proportional to barometric pressure, it is not strictly 
necessary to correct for elevation here. 
Furthermore, it is really only necessary to ensure 
that Tdew = Tmin at all times. 

5. Finally, adjust the value of e(0) calculated at step 4 
to the elevation of the grid point obtained from the 
ECHAM4 orography data in step 2: 

e(z) = e(0) P(z)/P(0) [6] 

3.3 Interpolation using ANUSPLIN 

ANUSPLIN is a package of programs (Hutchinson, 
2000) used to fit thin plate splines to noisy data, of 
which climate station records are a classic example. It 
has been applied successfully in Australia, New 
Zealand, China and parts of southeast Asia, South 
America, Africa, and Europe (e.g., Hutchinson, 1995, 
1998a, 1998b), to Canada (Price et al. 2000; McKenney 
et al., 2001, 2004 this conference) and globally (New et 
al., 2002), to interpolate monthly means of several key 
climate variables, as well as to interpolate daily data 
(e.g., Hutchinson, 1999a). The general approach is to 
treat climate data as variables dependent upon spatial 
dimensions (latitude, longitude and elevation) and 
potentially other factors such as slope, aspect, and 
spatially varying rainfall distributions). Rigorous tests by 
Price et al. (2000) and McKenney et al. (2001) indicated 
that ANUSPLIN can perform extremely well for several 
key long-term mean climate variables across much of 
Canada. There remain challenges at shorter timesteps 
in remote areas at high latitudes and high elevations 
where climate stations are sparse and/or records are 
incomplete or of poor quality).  

Thin plate splines can be described as a 
generalization of a multivariate linear regression model 
in which the parametric model is replaced by a smooth 
nonparametric function. The theory of ANUSPLIN has 
been described extensively elsewhere (e.g., 
Hutchinson, 2000, 1995, 1998a, 1998b; Hutchinson 
and Gessler, 1994), as well as briefly in McKenney et 
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al. (2004, this conference), hence will not be discussed 
further.  

In previous work (Price et al., 2001), several 
experiments were carried out to investigate different 
ANUSPLIN models and settings, relating particularly to 
the use of elevation as a third independent variable for 
statistical downscaling of GCM output. Statistics 
generated by ANUSPLIN in these tests showed that 
elevation had little effect on the fitted surfaces; i.e., 
there was no statistical signal in the interpolated 
anomaly values when elevation was included as the 
third independent variable. A possible explanation is 
that elevation is typically averaged across an entire 
GCM grid cell, so mountainous regions are reduced to 
relatively low altitude plateaux, and hence, the effects 
of dramatic changes in elevation (e.g., on temperature, 
rainfall and windspeed) are not captured well. It was 
therefore decided that the interpolation of GCM data 
would be based solely on longitudinal and latitudinal 
gradients, while any effects of elevation on local climate 
would be captured in the analysis of actual climate 
station records. In the latter case, elevation effects are 
clearly significant (e.g., McKenney et al. 2001). The 
bivariate ANUSPLIN interpolations reported here all 
used a constant smoothing parameter (fixed signal). 
Essentially individual GCM grid cell values are 
smoothed by this procedure, thereby including the 
influences of adjacent grid cells, and hence reducing 
the occurrence of singularities (“bullseyes”). This seems 
reasonable because the GCM outputs are inherently 
uncertain, and nearby grid cells are somewhat 
indicative of the likely changes that would drive 
landscape-scale changes. 

Hence, ANUSPLIN was used to fit surfaces to the 
normalized monthly GCM scenario data treating them 
as if they were anomalies from the 1961-90 mean 
values. The companion program LAPGRD was then 
used for creating regular grids together with log files 
containing summary statistics. Each output grid 
contained interpolated anomalies for a land surface 
mask derived directly from a 300 arc-second digital 
elevation model (DEM) of North America constructed at 
the CFS Great Lakes Forestry Centre from Canadian 
1:250,000 National Topographic Data (http://www.glfc. 
cfs.nrcan.gc.ca/landscape/topographic_models_e.html) 
using ANUDEM software (Hutchinson, 1989; see also 
http://cres.anu.edu.au/outputs/anudem.php), combined 
with the USGS GTOPO30 DEM coverage for the USA 
(http://edcdaac.usgs.gov/gtopo30/README.asp). The 
monthly climate grids were generated in ARC/INFO 
ASCII format, with a cell size of 0.0833º latitude × 
longitude, covering the domain from 168º to 52º W and 
from 25º to 85º N (1,392 columns × 720 rows).  

3.4 Scenario data handling 

The climate grids created by the interpolation of the 
monthly data were concatenated into time-series files. 
This required some programming effort, not least 
because the total size of each monthly time series at 
0.0833º resolution is huge. For example, in the cases of 
the CGCM2 and ECHAM4 scenarios, there are 201 
years of monthly data for each variable, giving a total of 
2,412 monthly models (maps). Each monthly map 

contains over 1,000,000 grid cells. Hence, when 
multiplied by 2,412 months, the complete data set for a 
single variable contains about 2.5 billion data values 
(including the NO_DATA values for ocean pixels). 
Storing this in an ASCII format (4 significant digits plus 
separator) would require approximately 12.5 GB per 
variable. The total storage required for eight scenarios 
and six variables at this resolution would be about 500 
GB.  

One solution to this data-handling problem is to 
compress the data into a binary format. In past work, 
we adopted the University Corporation for Atmospheric 
Research (UCAR) network Common Data Form 
(NetCDF) standard to develop a series of UNIX tools for 
processing, storing and manipulating gridded data sets 
(http://www.unidata.ucar.edu/packages/netcdf/) see also 
Price et al., 2001). The NetCDF files are configured to 
store all values internally as 16 bit integers, allowing all 
0.0833º resolution data for a single variable to be 
stored in a file of about 5 Gbyte per variable. This will 
work satisfactorily on any Unix system that can handle 
files greater than 2 GB, but still presents a problem on 
many systems at the present time. NetCDF data files 
can also be compressed to allow convenient storage 
and transmission via Internet. The NetCDF standard 
allows scaling and offsetting values to be applied to the 
internal data, to minimize any loss of precision.  

For the present study, however, the high resolution 
data were aggregated up to 0.5º resolution using an 
ARC/INFO GRID macro. For each month, all 0.0833º 
data values falling within a 0.5º boundary were 
averaged (excluding NO_DATA values). These data 
were then converted to NetCDF format using a custom 
conversion program ASG2NC. Results presented here 
are all based on the 0.5º aggregated data.  

To provide some reasonably clear pictures of the 
interannual trends, the normalized data from each 
scenario for each variable were first combined with the 
gridded 1961-90 climate normals data using a custom 
program NC_MERGE, which operates directly on data 
stored in NetCDF format. I.e., gridded climate data 
were added to the simulated anomalies in the case of 
temperature, but multiplied by the simulated ratios 
obtained for other variables. Selected examples of 
these merged grids were then used to create GIF 
format maps of simulated future climate using another 
program NC2GIF. These data were also aggregated 
into spatial averages for the North American continent 
using a program called NC_AGGREGATE, and 
converted to time-series of seasonal averages using a 
program called NC_AVERAGE (where March-May is 
“spring”; June-August is “summer”; September-
November is “fall” and December-February is “winter”).  

4 RESULTS 

Here we present a few selected samples of the 
results obtained, limited to analyses of temperature and 
precipitation data. They are designed to illustrate the 
richness of the data, their spatial and temporal 
resolutions, and some of the trends and variability 
characteristics that have been captured from the 
different GCMs.  
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Figures 1-2 compare the simulated changes in 
winter and summer temperature and precipitation as 
forecasted by each GCM under each of the IPCC 
SRES A2 and B2 emissions scenarios. Also shown for 
comparison is a reconstruction of historical data. It 
should be remembered, however, that these graphs 
represent a spatial aggregation across the entire North 
American continental land area, so regional trends may 
differ appreciably from those shown here. 

Some discrepancies in the historical data for the 
first half of the 20th century (summer maxima were 
evidently warmer, and winter minima, cooler, than after 
1950) may be attributed to the spatial averaging of the 

data, which does not account for latitudinal differences 
in grid cell area (to be discussed later). It should be 
emphasized that the interpretation of the historical 
record was not an objective of this study, and is to be 
addressed in detail in another paper. The most 
important objective here was to assess the general 
trends and variability that can be seen in the historical 
records and compare these with the trends and 
variability seen in each GCM scenario.  

With these important caveats in mind, the 
continent-wide trends seen in most of the scenarios 
derived from the GCM simulations correspond fairly 
well to the historical record, at least for the period after 
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Figure 1. Comparison of GCM scenarios interpolated to 0.0833º resolution for winter season (December, 
January, February) aggregated for the land area of continental North America. All GCM simulations were 
forced with IPCC SRES emissions scenarios, (left A2, right B2). For comparison, historical data for the 
period 1901-2100 are also shown, similarly aggregated from 0.0833º interpolated data. All data are 
normalized to the observed 1961-90 means. 
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1950. There are two notable exceptions: First, the 
ECHAM4 A2 scenario produces marked steps in the 
summer temperature data (decrease in Tmax and 
increase in Tmin), that appear unrealistic. Second, the 
CSIRO Mk 2 GCM appears to project some extremely 
wet summers, where rainfall greatly exceeds any value 
reported in the historical record. This was traced to an 
interesting problem in the region close to the California 
coast, where the GCM simulates mean rainfall for some 
months close to zero for the 1961-1990 period (much 
lower than occurs in reality). It also projected significant 
increases (of the order of 10-20 mm month-1) for the 
future, which resulted in absurdly high anomaly ratios 

for some months. When these ratios were multiplied by 
baseline observations, some enormous spikes in 
monthly rainfall were generated. Subsequently, 164 
instances of ratios exceeding 10.0 were observed to 
occur in the B2 scenario simulation. The precipitation 
data obtained from the CSIRO Mk 2 should therefore 
be used cautiously. In future, a maximum threshold 
ratio will be imposed for variables such as this. 

All the GCMs show marked increases in both 
summer and winter temperatures from 1991. As might 
be expected given the greater GHG forcing resulting 
from the A2 emissions scenario, the A2 simulations 
generally predict larger temperature increases. By 
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Figure 2. Comparison of GCM scenarios interpolated to 0.0833º resolution for summer season (June, 
July, August) aggregated for the land area of continental North America. All GCM simulations were 
forced with IPCC SRES emissions scenarios, (left A2, right B2). For comparison, historical data for the 
period 1901-2100 are also shown, similarly aggregated from 0.0833º interpolated data. All data are 
normalized to the observed 1961-90 means.  
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2100, the projected increases are approximately 6 ºC in 
summer and 8 ºC in winter for A2, compared to 4 ºC 
and 6 ºC for B2, respectively. (See also columns 6-9 in 
Table 1.) Furthermore, with the exception of ECHAM4 
A2, the differences between emission scenarios are at 
least as significant as the differences among models. 
There also appears to be a consensus amongst the 
GCMs that winter precipitation will increase—by as 
much as 20% under the A2 scenario and 10% under 
the B2. 

The assessment of changes in variability simulated 
by the different GCMs is difficult when based only on 
visual inspection of Figures 1 and 2. These graphs 
suggest that the GCMs generally produce lower inter-
annual variability than observed, although the ECHAM4 
appears to capture the year-to-year variations in 
temperature and precipitation quite well. The CGCM2 
seems able to capture much of the interannual 
variability in precipitation but underestimates it for 
temperature. 

Table 1 attempts to provide a more quantitative 
assessment of the GCM simulations of interannual 
climate variability. This table is divided into three 
sections, for each of minimum and maximum 
temperature and precipitation. In the first section 
(columns 2-5), variances of the means simulated by 
each GCM aggregated over the North American 
landmass, were calculated for each season in the 30-
year period 1961-1990. Given that the observed 
historical mean values were also used as the baseline 
for normalizing all the GCM data, the means of all 
simulated and observed data for this period should be 
identical. (Furthermore, the variances obtained from the 
A2 and B2 emissions scenarios should be similar for 
each GCM because, the GHG forcings for the 1961-90 
period are the same.) Table 1 therefore reports the 
ratios of the simulated variances to the observed 
variances. A value of 1.0 indicates near-perfect 
agreement between the modelled and observed 
variances. Values significantly less than 1.0 imply the 
model is underestimating variability, and conversely.  

Table 1 shows that the variances obtained for the 
A2 and B2 scenarios for 1961-1990 were generally very 
similar although small differences can be detected. 
There are two contributing explanations: (1) in the 
particular case of the HadCM3, the integrations for the 
A2 and B2 scenarios were performed separately, so 
presumably some differences in initialization for these 
runs resulted in significant differences in the output for 
the 1950-1990 period; (2) winter values for all three 
variables often differ because they include data for 
January and February 1991 in the seasonal means.  

It can be seen that the CSIRO Mk 2 greatly 
exaggerated variability in observed Tmin for fall and 
winter, though perhaps surprisingly, it was quite 
accurate for spring and summer. The remaining GCMs 
significantly underestimated the variability in fall 
temperatures, but variability in winter spring and 
summer Tmin were generally captured reasonably well. 
The success in capturing variability in Tmax was more 
variable: most models underestimate, though CSIRO is 
reasonably good in summer and fall while ECHAM4 
overestimates in winter and spring. CGCM2 and 

HadCM3 only achieved reasonable agreement in 
summer and spring, respectively.  

For precipitation, Table 1 shows that with the 
exception of CSIRO Mk 2, all models generally 
underestimated variability in seasonal precipitation, 
although HadCM3 performed well for summer. The 
CSIRO Mk 2 overestimation can be explained in part by 
the problems in southwestern USA noted previously, so 
should be treated with caution. With the exception of 
CGCM2, however, all GCMs significantly overestimated 
the variability of winter precipitation.  

Columns 6-9 of Table 1 show the changes in 
means projected by each GCM over a 100-year period. 
In this case, the values reported in the table are the 
“deltas” calculated as the differences in 30-year 
seasonal mean temperatures between 1961-90 and 
2061-2090 and ratios of 30-year seasonal mean 
precipitation (2061-2090 means divided by 1961-1990 
means). These results confirm the general magnitude 
of the increases in temperature simulated under each of 
the A2 and B2 scenarios reported earlier. They also 
show that, without exception, all the GCMs project 
increases in precipitation year-round, typically in the 
range of 10-15%, with the smallest increases occurring 
in summer.  

The last section of Table 1 (i.e., columns 10-13), 
provides a comparison of the change in variability as 
projected by each GCM under each emissions 
scenario. In this case, the values reported are the ratios 
of the variances of seasonal means simulated by each 
GCM for the period 2061-2090 to those simulated by 
the GCM for 1961-1990. If the value is greater than 1.0 
it indicates that simulated variability has increased, and 
conversely. These results are particularly interesting 
because they suggest that the A2 emissions scenario 
will produce significantly increased variability in 
seasonal temperatures (most ratios >1.0 for 2061-
2090). The general trend under the B2 emissions 
scenario, however, is of reduced variability (most ratios 
<1.0 in the case of Tmin, and several are less or very 
close to 1.0 for Tmax). The CSIRO Mk 2 projections are 
the notable exception in that this GCM exhibited 
substantial increases in temperature variability for 
spring and summer under A2, to match the significant 
exaggeration of present-day variability for fall and 
winter already noted, with somewhat smaller increases 
under the B2.  

The changes in variability of seasonal precipitation 
projected by the different GCMs were less clear. There 
appeared to be very little consistency either among the 
different models or between the two emissions scenarios. 
Again, discounting the CSIRO Mk 2 because of the 
problems outlined earlier, all the GCMs projected small 
to large increases in seasonal variability, although the 
magnitudes of these increases varied with season and 
GCM. The HadCM3 projected the greatest increases, 
year-round, although all models indicated greater 
interannual variability in spring precipitation.  

Clearly, changes in temporal variability of climatic 
variables are not the entire story. Figures 3 and 4 
provide a comparison of the long-term spatial changes 
in two climate variables as simulated by each GCM 
under each emissions scenario. The 30-year means of 
July minimum temperature and precipitation were  
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Table 1. Basic statistics for seasonal mean data from different GCM scenarios compared with historical temperature and precipitation data. 

  Ratios of Variances (GCM / Observed)a Changes in Means (2061-90) – (1961-90)b Ratios of Variances (2061-90) / (1961-90)c 
Min. Temperature  Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall Winter 

CGCM2 - A2  0.81 1.29 0.57 0.98 5.32 4.20 3.86 6.87 2.23 1.74 1.19 1.41 
HadCM3 - A2  1.02 0.68 0.50 0.82 4.14 4.15 4.95 5.32 1.37 4.06 2.97 1.65 
CSIRO Mk2 - A2  1.11 0.97 3.89 2.33 7.20 5.51 6.37 8.41 3.63 3.97 1.21 1.31 
ECHAM4 - A2  1.76 0.82 0.59 1.44 7.47 5.96 7.42 9.53 0.72 2.05 2.47 1.51 
              CGCM2 - B2  0.81 1.29 0.57 1.00 3.83 3.01 2.89 4.84 0.87 0.86 0.67 0.91 
HadCM3 - B2  1.01 0.66 0.49 0.80 3.20 3.22 4.02 4.05 0.81 1.96 1.22 1.04 
CSIRO Mk2 - B2  1.11 0.97 3.89 2.27 5.24 4.73 5.50 6.62 2.79 1.50 0.79 0.60 
ECHAM4 - B2  1.76 0.82 0.59 1.44 4.99 3.94 5.32 7.09 0.82 1.01 1.24 0.97 
              Max. Temperature  Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall Winter 

CGCM2 - A2  0.47 0.85 0.50 0.69 4.63 4.28 4.01 5.63 2.89 2.47 1.44 1.19 
HadCM3 - A2  0.89 0.73 0.42 0.63 3.87 4.55 4.77 4.76 1.37 3.21 3.67 1.55 
CSIRO Mk2 - A2  0.51 1.09 0.84 0.29 5.46 4.34 4.23 5.20 4.10 3.12 1.92 2.11 
ECHAM4 - A2  1.41 0.69 0.56 1.25 3.16 2.47 4.18 5.48 0.86 1.81 2.53 1.60 
              CGCM2 - B2  0.47 0.85 0.50 0.69 3.32 2.96 2.94 3.99 1.06 1.04 0.73 0.81 
HadCM3 - B2  0.87 0.66 0.40 0.62 3.01 3.52 3.92 3.70 0.69 1.71 1.44 0.97 
CSIRO Mk2 - B2  0.51 1.09 0.84 0.29 4.34 3.59 3.65 4.42 2.10 1.29 0.81 1.28 
ECHAM4 - B2  1.41 0.69 0.56 1.21 4.01 3.67 4.73 6.37 0.89 1.01 1.05 0.81 
              

  Ratios of Variances (GCM / Observed)a Changes in Means (2061-90) / (1961-90)b Ratios of Variances (2061-90) / (1961-90)c 

Precipitation  Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall Winter 

CGCM2 - A2  0.26 0.76 0.54 0.81 1.10 1.03 1.07 1.06 1.99 1.77 0.94 1.65 
HadCM3 - A2  0.35 1.03 0.49 1.49 1.13 1.09 1.19 1.16 2.17 2.55 5.12 1.31 
CSIRO Mk2 - A2  0.35 2.50 1.53 1.56 1.19 1.06 1.08 1.17 1.79 0.74 0.75 0.68 
ECHAM4 - A2  0.41 0.73 0.75 1.31 1.11 1.09 1.14 1.19 2.36 1.72 1.24 2.74 
              CGCM2 - B2  0.26 0.76 0.54 0.83 1.09 1.05 1.07 1.06 1.16 2.34 1.67 1.93 
HadCM3 - B2  0.32 0.91 0.50 1.57 1.11 1.09 1.14 1.14 1.32 2.13 3.46 1.08 
CSIRO Mk2 - B2  0.35 2.50 1.53 1.56 1.15 1.09 1.07 1.11 1.86 2.31 0.63 0.70 
ECHAM4 - B2  0.41 0.73 0.75 1.30 1.09 1.09 1.11 1.15 2.32 1.27 1.03 1.50 
Notes: a These ratios compare variances of seasonal means for the period 1961-1990 obtained from historical observations, to those simulated for the same period 

by each GCM. Hence, a value of 1.0 would indicate near-perfect agreement in the spatially and temporally averaged variances. 
b Changes in seasonal temperatures are reported as differences, whereas changes in seasonal precipitation are reported as ratios. 
c These ratios compare variances of seasonal means simulated by each GCM for the period 2061-2090 to those simulated by the same GCM for 1961-
1990. Hence, a value of 1.0 would indicate no simulated change in the spatially and temporally averaged variances over a 100-year period.  
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Observed data (1961-90) 

CGCM2 - A2 (2061-90)

CGCM2 - B2 (2061-90)

HadCM3 - A2 (2061-90) CSIRO Mk 2 - B2 (2061-90) 

HadCM3 - B2 (2061-90) ECHAM4 - A2 (2061-90)

CSIRO Mk 2 - A2 (2061-90) ECHAM4 - B2 (2061-90)   

Figure 3. Comparison of interpolated GCM scenario projections of July mean monthly minimum temperature (ºC) for the period 2061-2090. Also 
shown are interpolated climate station means for the period 1961-1990 (top left).  
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Observed data (1961-90) 

CGCM2 - A2 (2061-90)

CGCM2 - B2 (2061-90)

HadCM3 - A2 (2061-90) CSIRO Mk 2 - B2 (2061-90) 

HadCM3 - B2 (2061-90) ECHAM4 - A2 (2061-90)

CSIRO Mk 2 - A2 (2061-90) ECHAM4 - B2 (2061-90)  

Figure 4. Comparison of interpolated GCM scenario projections of July mean monthly precipitation (mm) for the period 2061-2090. Also shown are 
interpolated climate station means for the period 1961-1990 (top left).  
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mapped at 0.5º latitude/longitude resolution both for 
1961-1990 (observed data) and for each GCM 
projection of the 2061-2090 period. For each GCM, 
Figure 3 shows that spatialized projections of the 
general (continent-wide) increases in July minimum 
temperature are very similar under both emissions 
scenarios, differing only in that the A2 forcing invariably 
produces slightly higher mean temperatures than the 
B2. Only subtle differences among these projections 
result from inherent differences in the GCMs 
themselves. HadCM3 and ECHAM4 project conditions 
will be significantly cooler in the far north than do 
CGCM2 and CSIRO Mk 2. The ECHAM4 model forced 
by the A2 emissions scenario produces the most 
extensive region of increased temperature compared to 
1961-90, but as we have already noted, the ECHAM4 
A2 simulation exhibits an abrupt increase in Tmin from 
the baseline, which seems unrealistic. If the ECHAM4 
A2 result is discounted, the remaining maps are 
remarkably similar in all other respects.  

Comparison of projected changes in mean July 
precipitation (Figure 4) shows rather greater differences 
between models and even between A2 and B2 forcings 
for some GCMs, but even here there are some striking 
similarities. In fact the general trend projected by the 
other models appears to be a general reduction in 
precipitation in the southern USA combined with slight 
increases in the boreal regions of Canada extending 
into southern Alaska. The drying of the south-eastern 
USA is generally more severe under the A2 emissions 
scenario, but ranges from a large region of reduced 
rainfall with CGCM2 to a smaller but drier region 
centered south of the Great Lakes with the Hadley and 
CSIRO models, to relatively little change from the 
baseline with ECHAM4. All the models project 
significant reductions in July rainfall for the western US 
coast, with ECHAM4 projecting the driest conditions. 

5 DISCUSSION & CONCLUSIONS 

In previous work, McKenney et al. (2001) and Price 
et al. (2001) used elevation as an independent variable, 
to capture fine-scale spatial variations in climate from 
station data interpolated across Canada. The 
dependence on elevation was found particularly 
important for the temperature, precipitation and vapour 
pressure fields. Figures 3 and 4 demonstrate the 
importance of that elevation effect in simulating the 
spatial variability of future projections of climate. Given 
the very poor representation of topography in present-
day GCMs (due to their coarse horizontal resolution), 
omitting the elevation component determined from the 
observed data (i.e., the 1961-1990 normals) would 
cause the interpolated scenarios to resemble the 
original GCM projections—with only broad-scale 
gradients emerging latitudinally and across the Rocky 
Mountains. Normalizing the GCM output eliminates 
model bias, and combining the normalized data with the 
interpolated climate observations then provides a much 
richer image of future climate.  

Eight high resolution climate change data sets have 
been developed, that should be useful for many finer-
scale impacts studies, though there are some important 
caveats: In particular, these data sets are scenario 

projections and assuredly not predictions. Their value is 
not in the forecasts they provide for specific grid cells or 
geographic locations. Instead, they provide a set of 
continuously varying data that can be combined with 
other spatial data sets to provide a rich multi-
dimensional mixture of possible future environments. 
These simulated environments, which are ultimately 
driven by a coarse-scale GCM integration, thus provide 
a means of driving climate-sensitive models with 
simulation data from several widely accepted GCMs .  

The comparison of interpolated data from different 
GCMs shown in Figures 1-2 and reported in Table 1 is 
valid in so far as all data sets were processed 
identically. However, the comparison of these GCM 
scenarios with the historical time series raises a 
concern about area-weighting the calculation of the 
spatial averages. Given that a geographic map 
projection is being used, on an area-weighted basis, 
northern grid cells are contributing more to the 
calculated average than the southerly grid cells. This 
presents a problem when evaluating the historical data 
because the distribution of climate stations is uneven, 
and in fact the lowest station density typically occurs at 
the highest latitudes of Canada and Alaska, while the 
highest station density (which presumably indicates the 
greatest accuracy in the interpolated map product) 
occurs in the contiguous USA. Hence, in future work we 
will calculate the spatial averages accounting for the 
areas of each grid cell. Future work also includes 
production of a Canadian coverage using 10 km 
resolution on Lambert Conformal Conic (LCC) 
projection. The LCC is not a true equal area projection, 
but it greatly reduces the latitudinal distortion that 
occurs with geographic projections, hence a spatial 
average calculated over a large region is more 
meaningful. A further advantage of such projections is 
that when used as input to large-scale model 
simulations, they greatly improve the efficiency because 
the same area can be simulated with a more uniform 
density of grid points.  

The data sets reported here will be suitable for 
driving a range of process models, where the objective 
is to investigate impacts of different climate scenarios 
per se. As with the GCM data themselves, however, the 
results obtained from such “impacts” models should not 
be taken as predictions, but rather as sets of possible 
outcomes located within a probability distribution 
determined by a plausible set of values for many 
variables including climate. Guided by available data, 
we attempt to capture what is known about the unique 
combination of conditions in each grid cell, but accept 
that it can never be completely correct. Repeating the 
simulations with different climate scenarios and 
comparing results for many grid cells will allow the 
impacts modeler to draw conclusions about the relative 
sensitivities of each region, and possibly, the relative 
probabilities of different outcomes.  

These data sets were compiled to support 
comparison of the possible impacts of climate change 
on North American forest ecosystems. The Vulnerability 
and Impacts of North American Forests to Climate: 
Ecosystem Responses and Adaptation project 
(VINCERA), will compare simulations by three dynamic 
vegetation models, each driven by a common set of 



  13 

these climate scenarios. In addition they are being used 
to illustrate possible changes in the geographic scope 
of the climatic range of individual species (see 
http://g4.glfc.cfs.nrcan.gc.ca/ph_main.pl) Access to 
data can be obtained on application to the senior 
authors (DTP and DWM).  
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