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1. INTRODUCTION 
 

Comparing transport and dispersion model 
output to monitored pollutant concentrations is 
difficult. Transport models often forecast 
ensemble averages while receptors record 
temporal averages. Depending on the 
averaging time, these two averages can differ 
widely when the transporting flow is turbulent 
(Wyngaard 1992, Wyngaard and Peltier 1996, 
Venkatram and Wyngaard 1998). Likewise, 
receptor models can be used to estimate the 
apportionment to potential sources if a 
sufficient number of chemical species has 
been measured. These models exhibit similar 
sources of uncertainty. 

 
Receptor models are formulated to begin 

with pollutant information monitored at a 
receptor and to look backward, using data on 
several species and information about relative 
concentrations of those species from potential 
sources, to apportion the pollutant to the 
potential sources. In contrast, the chemical 
transport, or dispersion, models start with the 
source characteristics and use physics, 
mathematical, and chemical calculations to 
predict pollutant concentration at some 
distance from the source. Important input for 
those models includes information about the 
emissions from the source, the local 
atmospheric conditions, and some 
geographical characterization. Both types of 
models have been highly developed and forms 
of them are widely used for prediction and 
diagnosis of events.  

 
It would be of great benefit to be able to 

couple the strengths of the two types of 
models. The transport and dispersion models 
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use physics and chemistry principles to predict 
the statistical likelihood of concentrations of 
pollutants for given conditions. Receptor 
models are grounded in reality, taking actual 
measurements and estimating the fraction 
contribution from each source, without any 
consideration of the prevailing physics.  A 
coupled model would combine the physical 
basis of the calculations with actual monitored 
pollutant concentrations. 

 
There is a need to integrate the current 

technology of the forward-looking transport 
and dispersion models with backward-looking 
receptor models to define the apportionment 
of monitored data to their sources and to 
estimate the uncertainty involved. Here we 
couple a simple dispersion model with a 
chemical mass balance (CMB) receptor model 
in a way that optimizes source apportionment 
factors to determine the sources of monitored 
pollutant. We demonstrate the technique here 
using synthetic data. 

 
 A few investigators have used 
information on dispersion or chemical 
transport in computing source apportionment. 
Qin and Oduyemi (2003) began apportioning 
sources of PM 10  with a receptor model, then 
augmented it with dispersion model 
predictions from vehicle emission sources. 
Cartwright and Harris (1993) used a genetic 
algorithm (GA) to apportion sources to 
pollutant data at receptors. The work of 
Loughlin, et al (2000) coupled an air quality 
model with receptor principles using a GA to 
design better control strategies to meet 
attainment of the ozone standard while 
minimizing total cost of controls at over 1000 
sources. Recently, Haupt (2004, also reported 
in Haupt and Haupt 2004) has used a basic 
Gaussian plume model used in a similar 
manner to that described below, coupled with 
a chemical mass balance receptor model via a 
genetic algorithm to compute the source 



calibration factors necessary to best match the 
measured pollutant. 
 
 
2. PROBLEM FORMULATION 
 

The CMB receptor model is often used to 
apportion monitored concentrations received 
at receptors to the expected sources. It 
requires receptor data of different monitored 
species and known emission fractions for each 
of those species from a number of sources. 
The CMB model can be written as:  
 

RSC =•                              (1) 
 
where C is the source concentration profile 
matrix, which denotes the fractional emission 
of each species from a given source;R is the 
concentration of each species measured at a 
given receptor, and S  is the unknown 
apportionment vector. A fit to the data 
produces the fraction contribution from each 
source, S.  Our coupled approach replaces the 
emission fractions in C with concentrations 
predicted by a transport model. Thus S 
becomes a calibration factor for the transport 
model dispersed emissions for an ensemble of 
time periods relative to the actual 
concentrations at the receptor. The modeled 
concentrations are time dependent, on a 
timescale that matches the meteorological 
variations. The receptor data is also time 
dependent, but on a timescale that matches 
the monitoring sample length. The source 
calibration vector (S) must be optimized to 
account for the time varying weather and 
emission rates. 
 

For N sources for M time periods, matrix 
equation (1) can be shown in expanded form: 
 

11 12 1 1 1 1

21 2 2

1

1

n N

m n m

m MN N M

C C C C S R
C S R

C S R

C C S R

     
     
     
     

=     
     
     
     

         

" "

# # #
%

# # #

                                                                               
(2) 

 
where: mnC = the modeled contribution of  

          source n at for time period m 

nS = the unknown calibration factor for  
          source n  

mR = the monitored particulate  
         concentration at the receptor for  
         time period m 

As long asM N≥ , S can be computed by 
standard techniques (matrix inversion if 
M N= or optimization otherwise).  

 
For our simple illustration, to compute the 

elements in the modeled concentration matrix 
C, we will use Gaussian plume dispersion: 
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where: mnC = concentration of emissions from  
           source n over time period m at 
                       a receptor 
 ( , , rx y z ) = Cartesian coordinates of  
                       the receptor in the downwind  
                       direction from the source.  
 mnQ  = emission rate from source n  
                       over time period m 
 u   = wind speed 
 eH = effective height of the plume  
                     centerline above ground 
 ,y zσ σ  = standard deviations of the  
                      concentration distribution in  
                      the y and z directions,  
                      respectively.  
 

For our simple example, we’ll compute the 
standard deviations following Beychock 
(1994). 
 

2exp (ln( ) (ln( ))I J x K xσ  = + +         (4) 

 
where x  is the downwind distance (in km) and 

,  ,  and I J K are empirical coefficients 
dependent on the Pasquill Stability Class, 
which depends on wind speed, direction, and 
insolation and can be looked up in tables 
(Beychok 1994). The concentrations 



computed in this manner from each source 
form the mnC  in equation (2).  

 
The source calibration factor serves to 

optimize agreement between the transport 
model and the receptor observations. That 
factor can be interpreted as an error or 
uncertainty in the modeling process in 
comparison to the monitored data. This 
uncertainty comes from the input data and 
from the modeling process itself. The primary 
sources of error could be characterized as: 1. 
the source emission rate; 2. the accuracy and 
representativeness of the meteorological 
input, both in terms of directly measured 
variables such as wind speed and direction, as 
well as in derived quantities such as mixing 
height (representing the boundary layer depth) 
and atmospheric stability characterization; 3. 
the model’s characterization of the 
atmospheric dispersion and chemical 
transformations; 4. not correctly modeling the 
stochastic fluctuations due to turbulence; and 
5. errors in the monitoring data. 

 
 

3. SOLUTION METHOD 
 

The remaining issue is how to best optimize 
the fit between the modeled dispersion and 
the monitored receptor data. This involves 
computing the best calibration factor, S. 
Because the optimization software must be 
robust and able to deal with ill conditioned 
problems and potentially complex solution 
spaces, we choose methods from the artificial 
intelligence community. The applications 
presented here use genetic algorithms (GAs) 
to perform the optimization. GAs are well 
suited to many optimization problems where 
more traditional methods fail. Some of the 
advantages they have over conventional 
numerical optimization algorithms are that  
they: 
• Optimize with continuous or discrete 

parameters, 
• Don’t require derivative information, 
• Simultaneously search from a wide 

sampling of the objective function surface, 
• Deal with a large number of parameters, 
• Are well suited for parallel computers, 
• Optimize parameters with extremely 

complex objective function surfaces, 
• Provide a list of semi-optimum 

parameters, not just a single solution, 

• May encode the parameters so that the 
optimization is done with the encoded 
parameters, and 

• Works with numerically generated data, 
experimental data, or analytical functions. 

These advantages outweigh the GAs’ lack of 
rigorous convergence proofs. 
 

There are many breeds of GA that are 
discussed in detail in Haupt and Haupt (2004). 
Here we apply a continuous parameter GA 
that is, one in which the parameters are real 
numbers. The flow chart in Figure 1 provides a 
“big picture'' overview of a continuous GA.  
The parameters are the genes which are 
strung together in a one-dimensional array 
known as a chromosome.  The GA begins with 
a population of chromosomes which are fed to 
the cost function for evaluation.  The fittest 
chromosomes survive while the highest cost 
ones die off. This process mimics natural 
selection in the natural world.  The lowest cost 
survivors mate.  The mating process combines 
information from the two parents to produce 
two offspring. Some of the population 
experiences mutations.  

 
 
 

Figure 1. Flowchart of continuous 
parameter genetic algorithm. 
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As seen in the figure, the first step of a 
continuous parameter genetic algorithm is 
creating the population of chromosomes.  
First, the real parameters are concatenated 
together into a chromosome as:  
 

[ ]
parNppppchromosome "" α21=     (5) 

 
where the ip  are the parameters and there 

are a total of parN parameters. The 
parameters are simply floating point numbers.  
The encoding function needs only keep track 
of which digits represent which parameters 
and to make sure they are within given 
bounds.  A population of such chromosomes 
is created using a random number generator 
so that the chromosome arrays are gathered 
together in a two dimensional matrix. Once the 
chromosomes have been created, their cost or 
fitness must be evaluated.  This is done by the 
cost or objective function, which is very 
problem specific.  The lowest cost 
chromosomes ( keepN ) remain in the 
population while the higher cost ones are 
deemed less fit and die off.  The reduced 
population is then the portion of the population 
available for mating. 
 

 There are a variety of methods to pair the 
chromosomes for mating.  Some popular 
methods are reviewed by Haupt and Haupt 
(2004).  Here, we choose to pair the 
chromosomes according to numerical rank.  
After the cost function evaluation, the 
chromosomes are sorted in order from lowest 
cost to highest.  That is, the nth chromosome 
will have a probability of mating of: 
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Then the cumulative probabilities are used 
for selecting which chromosomes mate. 

 
Once two parents are chosen, some 

method must be devised to produce offspring 
which are some combination of these parents. 
Many different approaches have been tried for 
crossing over in continuous parameter genetic 
algorithms (Adwuya 1996, Haupt and Haupt 
2004). 

 

The method used here is a combination of 
an extrapolation method with a crossover 
method. We wanted to find a way to closely 
mimic the advantages of the binary genetic 
algorithm mating scheme. It begins by 
randomly selecting a parameter in the first pair 
of parents to be the crossover point.  

 
{ }parNrandomroundup ×=α           (7) 
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where the m and d subscripts discriminate 
between the mom and the dad parent. Then 
the selected parameters are combined to form 
new parameters that will appear in the 
children: 
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where β  is also a random value between 0 
and 1. The final step is to complete the 
crossover with the rest of the chromosome as 
before: 
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If the first parameter of the chromosomes is 

selected, then only the parameters to right of 
the selected parameter are swapped. If the 
last parameter of the chromosomes is 
selected, then only the parameters to the left 
of the selected parameter are swapped. This 
method does not allow offspring parameters 
outside the bounds set by the parent unless 
β  is greater than one.  In this way, 
information from the two parent chromosomes 
is combined a way that mimics the crossover 
process during meiosis. 

 
     If care is not taken, the genetic algorithm 
converges too quickly into one region of the 
cost surface. If this area is in the region of the 
global minimum, that is good. However, some 
functions have many local minima and the 
algorithm could get stuck in a local well. If we 
do nothing to solve this tendency to converge 



quickly, we could end up in a local rather than 
a global minimum. To avoid this problem of 
overly fast convergence, we force the routine 
to explore other areas of the cost surface by 
randomly introducing changes, or mutations, 
in some of the parameters. A mutated 
parameter is replaced by a new random 
parameter. 
 

The cost function was formulated to 
minimize the difference between the two sides 
of (1), summed over the total number of 
meteorological periods considered. This 
normalized residual is: 
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where M is the total number of meteorological 
periods. Note that each meteorological period 
might be composed of averages over many 
shorter periods. Thus, the GA evaluates the 
summation cost function for each random 
chromosome of parameters for each iteration. 
In spite of the large number of cost function 
evaluations, CPU time remains modest. For 
the poorly conditioned problems we often 
encounter in real data, we have found that the 
GA works better at minimizing the matrix 
equation than competing techniques. This cost 
is also the metric used below to compare the 
performance for different cases. 
 
 
4. APPLICATION 
 
4.1  Synthetic Data on a Circle 
 

We validate the coupled 
receptor/dispersion model technique by testing 
it on carefully constructed synthetic data. The 
initial test cases place a receptor at the origin 
and 16 sources in a circle of radius 500 m 
spaced every 22.5 degrees (see Figure 2). 
Receptor data is created using the same 
dispersion model to be used for the coupled 
model optimization. To fit data for 16 sources, 
we need more than 16 independent 
meteorological periods. Meteorological data 
were created to represent wind directions from 
16 points of the wind rose and representative 
wind speeds. These initial runs assume 

stability D for ease of comparison. The 
dispersion model was run using one hour 
averaging over the meteorological data and 
using assumed calibration factors, S, that we 
hope to match with the coupled model. Thus, 
we have used a dispersion model to create 
receptor data that matches the 
source/receptor configuration and the 
synthetic meteorological data. 

 

 
Figure 2. Configuration for circular 

synthetic data. Sources are denoted by “X” 
and the receptor as “٭”. 

 
     The coupled receptor/dispersion model 
was then run with the synthetically generated 
data. The first tests were done by setting the 
calibration factors to 0, except for one source 
that was set to a 1. The genetic algorithm, 
when run with a sufficient number of iterations, 
will gravitate toward the correct solution. For 
this problem, the number of iterations 
determine the smallness of the residual. 
Figure 3 demonstrates the GA convergence 
over 50,000 iterations. We see that the GA 
continues to minimize the residual. However, a 
MATLAB run with this many iterations takes 
approximately 2.9 hours of CPU time on a 2.4 
GHz dual processor Xeon machine. The next 
question is how many iterations are necessary 
to get an acceptably small residual with a 
reasonable amount of computer time. Table 1 
shows the results of a sensitivity study of 
residuals versus the number of iterations. 
Since the GA uses random numbers, a 
different residual is expected for each run that 
uses a different random seed. Thus, for this 
table, each configuration was run 5 times and 
the mean and standard deviation of the 
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residuals is listed. To assure that this analysis 
is not unique to the single source being turned 
on, it was repeated for a two source 
configuration, with source numbers 1 and 4 
each having calibration factors of 0.5. Those 
results are reported in Table 2.  
 

 
Figure 3. Convergence history of 50,000 
iterations of a GA for the single source 

configuration. The green line gives mean 
residual and the blue line is the best 

residual. 
 
 
Table 1. Residual size as a function of the 
number of GA iterations. 

Iters Best 
Residual 

Mean  
Residual 

Stand 
Dev 

CPU 
time 
(s) 

     
   500 0.179 0.269 0.096 109

  1000 0.155 0.191 0.030 232
  2000 0.052 0.077 0.034 339
  5000 0.034 0.052 0.020 1078
50000

* 
5.36× 410−   10313

• based on a single run 
 
 
Table 2. Residual as a function of the 
number of GA iterations for a two source 
configuration. 

Iters Best 
Residual 

Mean  
Residual 

Stand 
Dev 

CPU 
time 
(s) 

     
  1000 0.065 0.120 0.037 228
  2000 0.047 0.088 0.028 432
  5000 0.017 0.029 0.015 1154

 

     In addition, one more sensitivity to the 
number of iterations was run for four sources 
each having a calibration value of 0.25. Figure 
4 compares the actual solution to that 
computed by single runs of the GA for several 
differing iterations. We see that even for a 
relatively small number of iterations, the 
solutions compare relatively well. The more 
iterations, the better the comparison with the 
know calibration factors. 
 

 
Figure 4. Demonstration of GA 

convergence for varying number of 
iterations for representative runs using 

four sources of 16. 
 

 
 
4.2  Actual Emission Configuration with 
Synthetic Meteorological Data 
 

A second comparison is done using an 
actual emission configuration. Data was 
obtained for Cache Valley, Utah. A map of the 
sources is given in Figure 4. The actual 
location of the sources was obtained from the 
state of Utah emission inventory and heights 
were estimated. However, at this stage, each 
source was still assigned the same artificial 
emission rate. The receptor location is the 
actual receptor on Main Street in Logan, Utah. 
For verification purposes, the meteorological 
data was produced synthetically to 
systematically sample the wind field. Emission 
factors were assumed, once again assigning a 
factor of 0 to all sources and turning one or 
more sources back on to validate the 
methodology. 

 
Using real source configuration is a much 

more difficult problem than placing sources in 



a concentric circle. For instance, consider the 
case where two sources might be at the same 
angle from the receptor but at different 
distances. If the wind speed was not variable, 
it would be difficult to distinguish between the 
contribution from those two sources. Thus, 
more variability in meteorological conditions is 
more likely to produce a correct allocation of 
source apportionment factors. 
 

 
Figure 4. Map of emission sources in 
Cache Valley, UT. Receptor is denoted by 
“*”. 
 
     The first validation example is with only one 
source factor of 1 used to create the data and 
none of the other sources contributing. The 
source chosen was 1.5 km west of the 
receptor, a direction unlike the remaining 
sources. As seen in Figure 5, the algorithm 
correctly identified the correct source in 
10,000 iterations. Source 4 had some spurious 
contribution implied, but that source is 25 km 
away, so its contribution would be well 
dispersed by the time it reached the receptor. 
The residual for this run was 0.0047604. 
 

 
Figure 5. Results of a 10,000 iteration 

source optimization for Cache Valley, Utah. 
A single source was initialized. The solid 

blue line is the exact data created 
synthetically. The dashed red line is the 

optimized solution. 
 
     An second example run was done with 
three sources tuned to an apportionment 
factor of 1 while the rest are given zeros. The 
apportionment factors were optimized using 
the coupled model using 64 meteorological 
periods and 10,000 iterations. The comparison 
appears as Figure 6. The three sources that 
were given 1’s are well captured. However, 
another five sources are spuriously assigned 
large apportionment factors, in spite of the 
relatively small residual of 0.070144. Sources 
2, 4, 5 and 12, which were mistakenly 
assigned large apportionment factors, are 23 
to 25 km away from the receptor. Thus, their 
contribution is likely to totally disperse by the 
time it reaches the receptor given the simple 
Gaussian plume model used. Therefore, those 
apportionment factors are meaningless 
anyhow. Source 12 is 8.5 km away and 
therefore likely to contribute, but it is in the 
same direction as the three sources that are 
making a real contribution. The lack of 
directional distinction makes it difficult to 
correctly identify only those sources that 
contribute to receptor pollutant concentration 
with the current configuration of the coupled 
model. 
 



 
Figure 6. Results of a 10,000 iteration 

source optimization for Cache Valley, Utah. 
The solid blue line is the exact data created 

synthetically. The dashed red line is the 
optimized solution. 

  
 
5.  DISCUSSION 
 
     Although this work is preliminary, it 
demonstrates the utility of an optimization 
approach to couple forward looking dispersion 
models with backward looking receptor 
models. We have demonstrated that for 
circularly symmetric source/receptor 
configurations, the model can correctly identify 
a single source or some combination of 
sources that is expected to contribute to the 
total pollutant monitored at a receptor when 
the synthetic data is created using the same 
dispersion model and meteorological data as 
used in the coupled model. In addition, when 
an actual configuration is used with synthetic 
emissions and meteorological data, the 
coupled model can still identify a single 
source. However, there is more difficulty in 
correctly identifying multiple sources. When 
the direction of the source from the receptor is 
not independent from other sources or the 
source is sufficiently far away, it is easy to 
misidentify additional sources.  
 
     These results assume a very simple 
dispersion model. More work needs done on 
calibrating this source/receptor model 
technique before it is useful for actual source 
identification. Some of the first elements to be 
added are to work with variable source 
strengths and use actual meteorological data 
to estimate atmospheric stability and the 
impact on dispersion. In addition, terrain 
effects could be important. This technique 

could be much more useful when more 
complex dispersion models are coupled to a 
receptor model. We plan to explore this option 
in future work. 

 
Note that one can also interpret the 

source apportionment factors as the total 
model error. If one had perfect knowledge of 
dispersion characteristics, meteorological 
conditions, source emissions information, and 
receptor data, one would expect the 
apportionment factors to be all ones. So the 
difference from one indicates the total 
uncertainty in the modeling and monitoring 
process. This implies that such a coupled 
model could also be used to estimate 
uncertainty for models. 
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