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1. INTRODUCTION 
 
 Development of convective boundary layer in a 
uniformly stratified, shear-free atmosphere has been 
extensively studied experimentally, both in the 
laboratory and in nature (see, e.g., Deardorff et al. 1980, 
Boers and Eloranta 1986, Nelson et al. 1989), by means 
of bulk models of differing complexity (see, e.g., 
Tennekes 1973, Zilitinkevich 1991, van Zanten et al. 
1999, Fedorovich and Mironov 1995), and, most 
extensively, though numerical large eddy simulations 
(LES; see, e.g., Deardorff 1974, Lewellen and Lewellen 
1998, Sullivan et al. 1998, Lock and MacVean 1999, 
Fedorovich et al. 2004). It has been established that at 
times long enough for the CBL structure to forget about 
initial conditions, the boundary layer growth happens in 
an equilibrium (quasi-stationary) manner, with the 
convective entrainment – which is a driving mechanism 
of the CBL development – being controlled by the 
balance between the buoyancy energy supply from the 
underlying surface and the energy dissipation in the bulk 
of the CBL. This balance leads to the CBL depth 
increasing as a function of the square-root of time. This 
behavior can be vividly illustrated in terms of the so-
called zero-order model (ZOM) of entrainment 
introduced by Lilly (1968) and reevaluated against LES 
data in Fedorovich et al. (2004). 
 The ZOM approximates the horizontally averaged 
profile of buoyancy in the CBL as a function of height 
with a zero-order discontinuity in place of the capping 
inversion layer. An important hypothesis underlying the 
ZOM in this case is the instantaneous adjustment of the 
CBL turbulence structure to the integral parameters of 
the layer. It is assumed, for instance, that appropriately 
scaled profiles of turbulence kinetic energy (TKE) and 
its dissipation rate integrate to universal constants over 
the layer. Experimental and numerical data obtained to 
date generally support these assumptions. 
 The present study is concerned with the extent to 
which the above assumptions are valid when the 
growing CBL encounters a discontinuity (or 
heterogeneity) in the stratification of the free 
atmosphere (a situation much more realistic than the 
stratification uniformity). Does the CBL turbulence 
regime instantly adjust to the stratification change? Can 
convective entrainment still be regarded as a quasi-
stationary process? How does the CBL depth change 
with time after the layer proceeds into the new 
environment, and how long does it take for the CBL to 
adjust to the new outer stratification? 
 We address these issues by applying LES to (i) the 
shear-free CBL that grows initially in a relatively weakly 

stratified atmosphere, with subsequent change to a 
stronger stratification, and (ii) to the inverse situation, 
when the CBL passes through an abrupt change from 
stronger to weaker stratification. We then apply the 
ZOM formalism to analyze and interpret the numerical 
simulation data. 
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Figure 1. Schematics of initial profiles of the virtual 
potential temperature θ corresponding to the CBL 
growth first through a weakly stratified atmosphere (I) 
with the change to a strongly stratified atmosphere (II). 
 
2. SIMULATION SETUP 
 
 For numerical simulations of entrainment, we used 
the LES code of Fedorovich et al. (2001, 2004). This 
code employs a finite-difference spatial discretization of 
filtered equations of atmospheric dynamics and 
thermodynamics, and the leap-frog scheme with a weak 
Asselin filter for the time advancement. For the subgrid 
turbulence parameterization, the Deardorff (1980) 
closure, which is based on a prognostic equation for the 
subgrid turbulence kinetic energy, is used. The pressure 
is calculated diagnostically from the Poisson equation 
solved by combining the Fast Fourier Transform 
technique in the x and y directions and a tri-diagonal 
matrix inversion over z. Monin-Obukhov similarity 



relationships are applied locally across the first mesh 
layer at the surface to relate the one-point dynamic and 
thermal parameters of the flow near the wall. The 
simulations were run in the domain of 
x×y×z=8 km×8 km×4 km with periodic lateral boundary 
conditions, on a 200×200×100 staggered grid with 
uniform spacing of . 40mx y z∆ = ∆ = ∆ =
 

z

θ
Qs=0.2 K m s-1

(dθ/dz)I

SW3-1: (dθ/dz)I=3 K km-1; (dθ/dz)II=1 K km-1

(dθ/dz)II

SW10-1: (dθ/dz)I=10 K km-1; (dθ/dz)II=1 K km-1

Strong-to-Weak (SW) cases

II

I

 
 
Figure 2. Same as in Fig. 1, but for the CBL initial 
growth through a strongly stratified atmosphere (I), with 
the change to a weakly stratified atmosphere (II). 
 
Initial (virtual potential) temperature profiles for the 
simulated CBL cases, which correspond to the 
stratification change from weak to strong (WS cases) 
and strong to weak (SW cases), are schematically 
shown in Figs. 1 and 2. For reference, three cases of 
CBL evolving in a uniformly stratified atmosphere with 
height-constant temperature gradients of 1 K km-1 (UNI1 
case), 3 K km-1 (UNI3 case), and 10 K km-1 (UNI10 
case) were simulated (not shown in Figs. 1 and 2). 
These gradients correspond to the interval gradients 
used in the cases with heterogeneous stratification 
(WS1-3, WS1-10, SW3-1, and SW10-1, see Figs. 1 and 
2). 
 The same values of virtual potential temperature 
flux at the surface, =0.2 K m ssQ -1, and surface 

roughness =0.01 m were prescribed in all simulated 
CBL cases. Turbulent convection was initiated by 
random temperature perturbations in the first grid-cell 
layer adjacent to the surface at the first time step of the 
simulation. 

0z

 Turbulence statistics were calculated by averaging 
(denoted hereafter by overbar) over the horizontal 
planes only, without complementary time averaging. 

The CBL depth  was determined from profiles of the 

total (resolved + subgrid) kinematic heat flux 
iz

' 'w θ  (at 
the surface, it is equal to ) by taking  as the height 
of the heat flux minimum within the entrainment zone. 
Profiles of the turbulence kinetic energy (TKE), e, were 
calculated by summing the total velocity variances and 
dividing the result by 2. The TKE dissipation rate 

sQ iz

ε  was 
evaluated from the employed subgrid turbulence model. 
 
3. CBL EVOLUTION IN AN ATMOSPHERE WITH 

UNIFORM STRATIFICATION 
 
 The CBL depth as function of time for the cases 
with uniform stratification of the atmosphere above the 
CBL (cases UNI1, UNI3, and UNI10) is shown in Fig. 3. 
As demonstrated in Fedorovich et al. (2004), in these 
cases, the entrainment reaches an equilibrium regime 
after a certain time into simulation. A ZOM expression 
for the CBL depth evolution in this regime reads 
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where 0( / )sB g Qθ=  is the surface buoyancy flux (g is 

the gravitational acceleration, 0θ  is the reference 

temperature), [ ]1/ 2
0( / )( / )N g d dzθ θ=  is the is the 

Brunt-Våisålå (buoyancy) frequency in the free 
atmosphere above the CBL, and  is the empirical 
constant representing the ZOM entrainment heat flux 
ratio in the equilibrium entrainment regime. The (t) 
data in Fig. 3 reveals a good agreement between the 
LES predictions and the analytical ZOM solution (1) with 
the commonly adopted value of =0.2 (Zilitinkevich 
1991). 
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 In the ZOM of the entraining CBL, the TKE balance 
equation, integrated over the CBL depth, takes on the 
following form (Fedorovich et al. 2004): 
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where iΦ  stands for the upward energy flux at the CBL 

top and 0( / )b g θ θ∆ = ∆  is the buoyancy jump across 
the inversion layer represented in the ZOM by a 
discontinuity interface. The assumption is further made 
that the TKE and its dissipation rate can be 
parameterized as 
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with universal functions eϕ  and εϕ  that integrate to 

universal constants 
1

0
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0

( )Cε ε dϕ ζ ζ= ∫ . This assumption is based on the 

Zilitinkevich and Deardorff (1974) hypothesis of self-
similarity of the CBL turbulence regime in the process of 

the CBL evolution, when  and  – the 
so-called convective velocity scale – are both changing 
with time. In other words, the CBL turbulence quantities 
are expected to adjust to the CBL evolution through , 
which is the integral parameter of the layer (the value of 
surface buoyancy flux  is considered constant in our 
study). 
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Figure 3. Simulated CBL depth evolution in the cases 
with uniform free-atmosphere stratification. The straight 
dashed lines show the ZOM solutions with =0.2. 1C
 
In the equilibrium entrainment regime, the left-hand side 
of (2) and the energy flux term on the right-hand side 
vanish, and, with due account to the employed scaling 
of ε , the integral TKE balance equation reduces to 
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from which the physical meaning of  becomes clear. 1C
 It is possible to notice, however, that the 
parameterizations (3) for e and ε  do not include any 
explicit dependence on the free-atmosphere 
stratification and thus, the integral parameters  and eC
Cε  are considered to be independent, not only of time, 
but also of N. One insufficiency of the Zilitinkevich and 
Deardorff (1974) scaling is rather well known (see, e.g., 
Sorbjan 1996): the scaled turbulence statistics in the 
CBL usually show better universal behavior in the lower 
portion of the CBL than in the upper part of the layer, 

where the influence of the capping inversion becomes 
important. 
 How significantly do the e and ε  integrals vary with 
the outer flow stratification in the simulated CBL cases? 
Time dependencies of the normalized integrals of e and 
ε , evaluated as 
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are shown in Fig. 4. 
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Figure 4. Time evolution of the normalized integrals of e 
(upper plot) and ε  (lower plot) in the UNI1 (blue), UNI3 
(red), and UNI10 (black) cases. 
 
The LES data indicate that integrals of TKE and its 
dissipation rate in the equilibrium entrainment regime 
are indeed quasi-independent of time (in this sense, 
they are close to constants  and CeC ε ), but show a 
noticeable (although weak) dependence on the free-



atmosphere stratification. Namely, the values of both 
integrals increase slightly with N. Nevertheless, with a 
certain degree of approximation, turbulence regimes in 
the simulated CBLs at the equilibrium stages of their 
evolution may be considered self-similar. At the same 
time, the simulation data in Figs. 3 and 4 confirm the 
applicability of (4) and thus, the insensitivity of the CBL 
growth rate at large t to the integral value of TKE (or 
constant ) as long as it remains reasonably small. eC
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Figure 5. Evolution of the CBL depth in the 
heterogeneously stratified atmosphere with stratification 
changing from weak to strong (Fig. 1). Simulated (t) 
are shown by thin irregular lines, blue for the WS1-3 
case and red for the WS1-10 case. Solid curves of 
respective color show non-stationary ZOM solutions for 
both cases in the post-transition time. Straight dashed 
lines present the ZOM equilibrium solutions (with 

=0.2) for stratifications 1 K km

iz

1C -1, 3 K km-1, and 
10 K km-1 (from left to right). 
 
The smaller values of nI ε  in Fig. 4 compared to the 

commonly accepted value of Cε =0.4 (which 

corresponds to =0.2) may be a result of differences in 
the integral evaluation procedures and of the spurious 
damping of small-scale fluctuations of the resolved 
velocity in the employed LES code (it leads to smaller 
values of subgrid TKE and, consequently, to smaller 
dissipation values). On the other hand, the numerical 
damping in the code also attenuates the energy 
available for entrainment, so its net effect on the 
entrainment and CBL growth, as one may conclude 
from Fig. 3, turns out to be close to zero. 

1C

 One may see that the integrals of both e and ε  in 
Fig. 4 change rather significantly before the CBL 
reaches the equilibrium state. This observation makes 
the applicability of the concept of self-similarity of the 

CBL turbulence structure to non-stationary stages of the 
CBL evolution rather questionable. 
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Figure 6. Time evolution of the normalized integrals of e 
(upper plot) and ε  (lower plot) in the WS1-3 (blue), and 
WS1-10 (red) cases. Vertical dashed lines correspond 
to the moment of the passage of the CBL top through 
the stratification change. Horizontal dashed lines show 
equilibrium values of corresponding integrals in the 
UNI3  and UNI10 cases (see Fig. 4). 
 
4. CBL EVOLUTION IN ATMOSPHERES WITH 

HETEROGENEOUS STRATIFICATION 
 
 We first consider characteristics of the CBL 
evolution in the WS cases sketched in Fig. 1. Time 
dependencies of the CBL depth for these cases are 
illustrated in Fig. 5. In both simulated cases, the change 
from weak to strong stratification happens at z=1000 m, 
which is approximately 1800 s into simulation. Prior to 
this moment, (t) follows reasonably well the ZOM 
prediction for the equilibrium CBL growth in the 

iz



atmosphere with a temperature gradient of 1 K km-1. 
Note, however, that the turbulence regime of the CBL at 
this time (see UNI1 curves in Fig. 4) has not yet reached 
equilibrium. 
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Figure 7. Evolution of the CBL depth in the 
heterogeneously stratified atmosphere with stratification 
changing from strong to weak (Fig. 2). Simulated (t) 
are shown by thin irregular lines, blue for the SW3-1 
case and red for the SW10-1 case. Solid curves of 
respective color show non-stationary ZOM solutions for 
both cases in the post-transition time. Straight dashed 
lines present the ZOM equilibrium solutions (with 

=0.2) for stratifications 1 K km

iz

1C -1, 3 K km-1, and 
10 K km-1 (from left to right). 
 
When the CBL top reaches the stratification change 
elevation, its growth considerably slows down. In the 
WS1-10 case of very strong new stratification, the 
growth actually stalls for some time. At this stage, in 
both cases, changes of  with time look very different 
from its behavior in the equilibrium entrainment regime. 
The CBL adjustment to new conditions requires a lot of 
time, even in the WS1-3 case, where the upper 
stratification is weaker. Needless to say, in both cases, 
the complete adjustment is not achieved on the time 
scales comparable with time scales of the CBL daytime 
evolution. 

iz

 Time changes of the e and ε  integrals (5), shown 
in Fig. 6, demonstrate the evolution of the CBL 
turbulence parameters corresponding to the CBL 
development in the WS cases. First of all, it is clear that 
in both cases, the change to the new stronger 
stratification boosts the growth of integral TKE and 
dissipation, and in the case with the strongest new 
stratification, this growth is considerably faster. The 
dissipation integrals grow faster than the TKE integrals 
at the first stages of the CBL transition to the new 
atmospheric stratification. Later, however, the growth of 
the dissipation integrals slows down, and both integrals 

reach equilibrium values for the new stratification over 
approximately the same time. In qualitative agreement 
with the (t) behavior (Fig. 6), these equilibrium values 
are reached earlier in the WS1-3 case than in the WS1-
10 case. Nevertheless, in both cases, the evolution of 
the CBL depth is still far from its equilibrium behavior, 
even when the TKE and dissipation integrals have 
already reached their equilibrium values. 

iz
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Figure 8. Time evolution of the normalized integrals of e 
(upper plot) and ε  (lower plot) in the SW3-1 (blue), and 
SW10-1 (red) cases. Vertical dashed lines correspond 
to the moment of the passage of the CBL top through 
the stratification change. Horizontal dashed line shows 
equilibrium values of corresponding integrals in the 
UNI1 case (see Fig. 4). 
 
Plots of the CBL depth evolution in the SW cases are 
presented in Fig. 7. In both cases shown, the CBL 
transition to the new atmospheric stratification happens 
at the same height (600 m), but in the SW10-1 case of 
stronger initial stratification the start of transition is 



considerably delayed compared to the weaker-
stratification case SW3-1. Changes of the CBL depth 
with time in the post-transition period are rather fast in 
the SW cases. For instance, in the SW10-1 case, the 
CBL depth jumps from 600 m to 1000 m in a matter of 
minutes. Evolution of the turbulence regime parameters 
corresponding to these rapid changes of the CBL 
vertical extension are shown in Fig. 8. The observed 
changes of the TKE and dissipation integrals in the 
post-transition time intervals point to the strong non-
stationarity of the turbulence regime in the rapidly 
expanding CBL. Immediately (or shortly after) the CBL 
passes the stratification change elevation, the values of 
both integrals diminish to values much smaller than their 
equilibrium values for the upper stratification, and it 
takes some time for them to recover. However, like in 
the WS cases, even after the integrals reach their 
equilibrium values, the CBL depth still does not follow 
the equilibrium solution. 
 
5. INTERPRETATION OF RESULTS IN TERMS OF 

ZERO-ORDER ENTRAINMENT MODEL 
 
 Let us now analyze the CBL development in a 
heterogeneous atmosphere using the ZOM conceptual 
framework. We apply the integral TKE balance equation 
(2), omitting the energy transport term (which is small 
within the considered stratification range), 
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and we also employ the ZOM equation of the CBL 
integral heat balance (Zilitinkevich 1991): 
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By approximating the integrals in (6) through (t) and neI

nI ε (t) given by (5), we come to the following 
entrainment-rate equation: 
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Introducing in (7) and (8) normalized variables 

,  and 1/ 2 3 / 2
i sx z B N−= 1/ 2 1/ 2

sy bB N− −= ∆ tNτ =  after 
Zilitinkevich (1991), we obtain the following system of 
ordinary differential equations: 
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With the integral turbulence parameters in (9) taken 
constant, =  and neI eC nI ε =Cε , as suggested by the 
Zilitinkevich and Deardorff (1974) scaling, (9) becomes 
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where = /0.3 and 2C eC 1 1 2C Cε= −  (see also Eq. 4). 
Equations (10) and (11), complemented with initial 
conditions 0( ) 0x xτ =  and 0( )y 0yτ = , have the 
following analytical solution: 
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This analytical solution with  and =4/3 was 
tested against the LES predictions of the post-transition 
CBL growth for all four cases with heterogeneous 
stratification (WS1-3, WS1-10, SW3-1, and SW10-1). 
The results for  are presented in Figs. 5 and 7. The 
values of constants in (10) and (11) were chosen based 
on the empirical  and C

1 0.2C = 2C

iz

eC ε  data summarized in 
Zilitinkevich (1991) and the LES estimates of the 
average values of  and neI nI ε  in the equilibrium 
entrainment regime (see Figs. 6 and 8). 
 Comparison of the analytical and numerical 
predictions of (t) for the WS cases (Fig. 5) shows that 
in these cases the CBL in the post-transition phase 
indeed develops in a quasi-stationary manner and its 
turbulence regime can be considered as approximately 
self-similar. Despite the fact that local changes of (t) 
in time under such conditions can considerably differ 
from the 1/2 power law characteristic of the equilibrium 
evolution, the overall changes of CBL depth are 
described rather decently by the ZOM based on the 
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iz



scaling concept of Zilitinkevich and Deardorff (1974), 
which implies self-similarity of turbulence regime in the 
evolving CBL. We also found that under such conditions 
the behavior of (t) is primarily determined by the initial 

values of  and , and by the dissipation integral 

(

iz

iz b∆
Cε ), while the sensitivity of solution to the value of  

is rather weak. 
eC

 However, in the cases of fast CBL evolution during 
its transition to the weakly stratified environment (SW 
cases), the ZOM solutions with chosen values of 
constants do not match LES predictions of (t) as 

nicely as in WS cases. Attempted variation of  and 
iz

eC
Cε  values within reasonable limits did not provide any 
better agreement between the analytical and numerical 

(t) predictions in Fig. 7. Apparently, under these 
conditions the CBL turbulence regime is not self-similar 
in the Zilitinkevich and Deardorff (1974) sense, and the 
ZOM analysis should be based on Eq. (9), which 
includes integral parameters  and 

iz

neI nI ε  dependent on 
time, rather than on Eq. (11) with universal constants. 
 Some of observed features of the simulated  

evolution (Fig. 7) as related to the time changes of  

and 

iz

neI

nI ε  (Fig. 8) can be readily explained in terms of (9). 
For instance, it follows from (9) that in the SW cases 
smaller values of  (in the denominator) along with 

smallness of 
neI

nI ε  and negative sign of /nedI dt  (in the 

numerator) − all together contribute to fast  post-
transition growth observed in Fig. 7. 
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6. SUMMARY AND CONCLUSIONS 
 
 In the reported LES experiments we have 
reproduced two types of the CBL evolution in a 
heterogeneously stratified atmosphere. 
 In the first set of simulated cases (WS), the CBL 
growth was slowed down by the strongly stratified 
environment, and the turbulence regime was gradually 
adjusting to this new environment. The zero-order 
model (ZOM) of entrainment, with conventional values 
of universal constants resulting from self-similarity 
assumptions, was found to describe the simulated CBL 
evolution rather well in these cases. 
 In the second group of experiments (SW), we 
studied the opposite type of CBL, which proceeded in its 
development from a strongly to a weakly stratified 
environment. These cases were characterized by strong 
non-stationarity of the CBL evolution. In order to 
adequately reproduce the CBL growth under these 
conditions by the ZOM, the model should directly take 
into account the non-stationarity of the CBL turbulence 
structure. 
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