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1. Introduction 
 

In the spring of 2003, 
polarimetric data were collected at the 
National Severe Storms Laboratory 
(NSSL) in support of the Joint 
Polarization Experiment (JPOLE).  
JPOLE was motivated by the potential 
for polarimetric applications to improve 
rainfall estimation, segregation of 
meteorological and nonmeteorological 
echo, and hydrometeor classification.  
The goals of JPOLE were to evaluate the 
engineering design and data quality of a 
polarimetric prototype of the Weather 
Surveillance Radar-1988 Doppler 
(WSR-88D) radar (KOUN), demonstrate 
the utility of the data in applications, and 
collect data for cost-benefit analysis and 
future research.   

 
Recent studies of JPOLE datasets 

validate significant improvements in 
rainfall estimation (Ryzhkov et al. 2003) 
and hydrometeor classification by the 
National Severe Storm Laboratory’s 
hydrometeor classification algorithm 
(HCA; Schuur et al. 2003), compared to 
conventional WSR-88D algorithms.  
One important component of the HCA, 
hail detection, is the focus of this paper. 
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Conventional approaches to hail 
detection have distinct disadvantages 
compared to polarimetric approaches.  
These disadvantages are discussed with 
respect to the current WSR-88D hail 
detection algorithm (HDA; Witt et al. 
1998).  First, HDA is based on vertical 
storm structure and environmental 
conditions that are difficult to quantify. 
Second, relationships between these 
factors and the probability of hail (severe 
or nonsevere) are empirically derived, 
rather than based on hydrometeor 
properties. Third, hail probabilities 
characterize the storm as a whole, so that 
the hail location is not specified. 

 
Unlike conventional radar 

variables, polarimetric variables are 
directly related to hydrometeor 
properties useful for pinpointing the 
location of hail within a storm.  Previous 
research indicates that polarimetric 
variables such as differential reflectivity 
(ZDR; Aydin et al. 1986), linear 
depolarization ratio (LDR; Hubbert et al. 
1998; Kennedy et al. 2001), correlation 
coefficient (ρHV; Balakrishnan and Zrnic 
1990; hereafter BZ 1990), and specific 
differential phase (KDP; BZ 1990) are 
instrumental for hail detection.  These 
variables are defined in detail in Bringi 
and Chandrasekar (2001).  While earlier 
approaches to hail detection apply 
Z−ZDR relations to separate rain from 
hail (Aydin et al. 1986), more recent 
approaches employ fuzzy logic.  In the 
fuzzy logic approach,  membership 



functions determine the degree to which 
various polarimetric measurements 
represent the likelihood of hail 
(Vivekananan et al. 1999; Zrnić and 
Ryzhkov 1999; Straka et al. 2000; Liu 
and Chandrasekar 2000, and Zrnić et al. 
2001).  To date, validation of these 
approaches is limited to case studies, 
without systematic statistical assessment 
of several hail events.   

 
The purpose of this paper is to 

assess and compare the performance of 
the recently tuned HCA to both its 
earlier version and the conventional 
HDA.  This assessment employs a 
ground truth dataset of 74 rain and hail 
reports, from 8 storms, collected by hail 
intercept crews during JPOLE.  The 
HCA and HDA are described in section 
2, followed by an overview of data 
collection during JPOLE and the 
employed verification methodology in 
section 3.  Section 4 describes the 
results, and section 5 provides a 
summary and conclusions.   

 
2. Algorithm descriptions 
 

Both the JPOLE (JPHCA) and 
more recent version of HCA are based 
on principles of fuzzy logic, as outlined 
in Vivekanandan et al. (1999), Zrnić and 
Ryzhkov (1999), Straka et al. (2000), 
Liu and Chadrasekar (2000), and Zrnić 
et al. (2001).  Following JPOLE, studies 
of JPHCA resulted in two significant 
changes to the algorithm.  First, the 
fuzzy logic methodology was 
transformed by using one-dimensional 
membership functions in place of two-
dimensional membership functions (e.g., 
Schuur et al. 2003).  Consequently, only 
membership functions based on ZDR 
depend on a second variable—
reflectivity factor, Z.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Fields of (a) radar reflectivity, (b) 
differential reflectivity, (c) JPHCA output, and (d) 
cross-correlation coefficient at 23:10 UTC on 11 June 
2003.  The plus sign indicates the location of 2.5 cm 
hail detected by the hail intercept team. 



Second, the more recent version 
of HCA employs six, rather than three, 
variables for classification. While both 
versions identify hail by high values of Z 
combined with low ZDR and ρhv (Aydin 
et al. 1986; Balakrishnan and Zrnić 
1990; Smith et al. 1999; among others), 
the new version also uses texture 
parameters to characterize the depth of 
spatial oscillations of Z and ΦDP (SD(Z) 
and SD(ΦDP), respectively), and Doppler 
velocity V, to distinguish between hail 
and ground clutter/AP, which might 
have a very similar Z, ZDR, and ρhv.  Low 
V and high values of the texture 
variables characterize ground clutter.  
This automated methodology is used to 
detect seven different classes including 
ground clutter / anomalous propagation 
(GC/AP), biological scatterers (BS), big 
drops (BD), light rain (LR), moderate 
rain (MR), heavy rain (HR), and 
rain/hail mixture (HA) at the two lowest 
scans (0.5˚ and 1.5˚). 

 
 
Figure 1 shows a representative 

example of JPHCA output for a 
supercell storm whose core is located 
approximately 40 km west and 80 km 
south of KOUN at 23:10 UTC on 11 
June 2003.  In Fig. 1, the reported hail 
(white plus sign) is located in a region 
where reflectivity (55 dBZ or higher), 
ZDR (0.0−0.5), and ρhv (0.90−0.95) 
values are characteristic of hail.  As a 
result, this region is correctly classified 
as hail by HCA.         
 

In brief, the conventional HDA 
(Witt et al. 1998) uses output from the 
storm cell identification and tracking 
(SCIT; Johnson et al. 1998) algorithm 
and Rapid Update Cycle (RUC)-
estimates of the freezing level height to 
determine the probability of hail 

associated with each storm.  
Specifically, the probability of hail is 
linearly related to the height of the 45-
dBZ echo above the freezing level.  The 
resulting probability characterizes the 
associated SCIT-identified storm. 
 
3. Data collection and verification 
methodology 
 

During JPOLE, the S-band (11-
cm) KOUN radar in Norman, Oklahoma, 
collected polarimetric data.  According 
to the KOUN radar design, horizontally 
and vertically polarized radiation is 
transmitted and received simultaneously, 
which prohibits the measurement of 
linear depolarization ratio (LDR), a 
parameter frequently used for hail 
detection.  Thus, it is important to 
determine how well hail may be detected 
without this variable. 

 
Verification of observed 

polarimetric signatures was an important 
focus of JPOLE. During the course of 
the project (28 April−13 June 2003), two 
hail-intercept vehicles were used to 
intercept thunderstorm cores that had the 
potential to produce hail at the surface. 
The vehicles collected more than 28 
hours of data on five separate days.  
These data included one isolated LP 
supercell storm on 1 May, one classic 
supercell storm on 19 May, two linearly 
aligned LP supercell storms on 11 June, 
and lines of convective storm cells on 14 
May and 10 June, all within 150 km of 
KOUN.  

 
The algorithms’ (JPHCA, HCA, 

and HDA) respective products were 
tested against the ground truth dataset 
collected by the hail-intercept vehicles 
for several observations spanning four 
cases.  These data included the isolated 



LP supercell storm, the classic supercell 
storm, and lines of convective storm 
cells.  JPHCA and HCA were run using 
data collected by the polarimetric 
KOUN radar, whereas HDA was run 
using data collected by KTLX, the 
nearest operational WSR-88D radar (20 
km northeast of KOUN).  For the two 
linearly aligned LP supercell storm, only 
KOUN data were available. Thus, 
analyses of these storms pertain to the 
JPHCA and HCA only. 

 
Observations from the chase 

teams were compared with KOUN 
JPHCA and HCA output at low levels 
(0.5° elevation) to validate the 
algorithms’ ability to discriminate 
between rain and hail.  For HDA, 
probabilities of 60% or higher were 
considered indicative of hail falling at 
the ground.   Ground truth data included 
in this validation met a set of  temporal 
and spatial criteria.  First, each hail 
report must occur within ± 6 min of 
available radar data (both KOUN and 
KTLX).  Second, the observation must 
be located within an acceptable distance 
of either the 40-dBZ or higher 
reflectivity contour or a region of 
positive HCA hail classification.  This 
distance, or radius of influence, varied 
from 3.2 to 5 km, depending on the 
speed of storm movement.   

 
The application of these criteria 

resulted in the validation of JPHCA, 
HCA, and HDA output for 47 reports of 
either hail or rain from six different 
storms. Using these results, a 2x2 
contingency table was created for each 
day, and for all days combined.  The 
contingency table was then used to 
compute the following measures: 
probability of detection (POD), 
probability of false alarm (POFA), false 

alarm rate (FAR), critical success index 
(CSI), and Heidke skill score (HSS; see 
Appendix for definitions).     

 
 

4. Statistical results 
 

For the four cases in this study, 
both JPHCA and HCA outperform HDA 
in terms of overall accuracy and skill 
(Table 1).  The most striking 
performance improvements for JPHCA, 
relative to HDA, are a 41% increase in 
HSS and a 41% decrease in POFD.  This 
substantial increase in HSS means that 
JPHCA classifies hail more skillfully 
than HDA, with respect to a random 
classification.  The substantial decrease 
in POFD means that JPHCA is less 
likely to attain a false alarm than HDA 
when hail is not observed.  Other 
considerable performance improvements 
in JPHCA, relative to HDA, include a 
26% increase in CSI and a 29% decrease 
in FAR.  The decrease in FAR means 
that false alarms are less likely when hail 
is classified by JPHCA rather than HDA.  
Interestingly, the POD remains 
essentially the same (increases in HCA 
by only 2%).  Hence, increases in 
JPHCA’s HSS and CSI, compared to 
HDA, arise mostly from a decrease in 
false alarms, rather than an increase in 
correct detections or “hits”.   

 
Further analysis of these cases 

shows that the lack of improvement in 
JPHCA’s POD results primarily from 
missed detections during an isolated LP 
supercell storm, located about 140 km 
west of KOUN.  Analyses of linearly 
aligned LP supercell storms observed by 
KOUN only revealed the same result: 
JPHCA has trouble detecting hail 
observed at the ground from LP storms.   

 



Figure 2 shows an example of 
polarimetric properties and JPHCA 
output from the 1 May 2003 isolated LP 
supercell at 00:16 UTC.  The white plus 
sign in Fig. 2 indicates the location of 
4.45 cm hail reported by one of the hail 
intercept vehicles.  In Fig. 2, the reported 
hail is located in a region where 
reflectivity values (45−50 dBZ) are well 
below the reflectivity threshold of 55 
dBZ conventionally employed for hail, 
but ZDR and ρhv values are similar to 
those associated with hail (0.0−0.5 and 
0.95−0.98, respectively).  Because 
JPHCA is heavily weighted by Z, it 
misclassifies this region as heavy rain. 

 
By modifying the JPHCA from a 

two-dimensional to a one-dimensional 
fuzzy logic approach, the hail signal 
found in ZDR and ρhv values is weighted 
more strongly, resulting in hail detection 
within the vicinity of the ground truth 
(Fig. 3).  By applying the new HCA to 
the linearly aligned LP supercell storms 
observed by KOUN only, we find that 
all previously missed hail detections are 
correctly classified.     

 
From a statistical standpoint, the 

“tuned” HCA eliminates former missed 
detections (POD = 100%) and thereby 
improves further the CSI (0.82 vs 0.89, 
respectively) and HSS (0.72 and 0.80, 
respectively), compared to JPHCA and 
HDA (Table 1).  However, these 
improvements come with a slight cost, 
where POFD increases from 17% 
(JPHCA) to 25% (HCA).  Note, 
however, that FAR remains the same 
(Table 1).  Thus, improved detection of 
hail in LP supercell storms results in a 
slight increase in false detections when 
hail is not observed at the ground.           
 

Table 1.  JPOLE hydrometeor classification 
algorithm (JPHCA), tuned HCA, and legacy 
WSR-88D hail detection algorithm (HDA) 
accuracy and skill measures, given as 
percentages, excluding CSI, and HSS, which 
range from 0 to 1.  Probabilities are rounded to 
the nearest integer.   
Algorithm POD POFD FAR CSI HSS 

JPHCA  90 17 10 0.82 0.72 

HCA 100 25 11 0.89 0.80 

HDA  88 58 39 0.56 0.31 

 

5. Summary and conclusions 
 

This study illustrates the 
applicability of polarimetric data for hail 
detection.  A statistical comparison of 
performance measures for the JPOLE 
HCA (JPHCA) and conventional HDA 
shows substantial improvement in the 
critical success index (CSI; 24%), 
Heidke skill score (HSS; 41%), 
probability of false alarm (POFA; 41%), 
and false alarm rate (FAR; 29%).  The 
primary shortcoming of JPHCA is 
missed hail detections during LP 
supercell storms.  Modifying the JPHCA 
from a two-dimensional- to a one-
dimensional-fuzzy logic algorithm 
solves this problem.  As a result, the 
probability of detection (POD) increases 
from 90 to 100%, CSI increases from 
0.82 to 0.89, FAR remains 
approximately the same, and POFA 
increases from 17 to 25%.        
 

The superior performance of 
JPHCA and HCA, compared to HDA, 
demonstrates the advantage of using 
polarimetric variables ZDR and ρhv, in 
addition to Z, to discriminate between 
hail and rain.  These results indicate that  

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Fig. 2. Fields of (a) reflectivity, (b) differential 
reflectivity, (c) JPOLE hydrometeor classification and 
(d) cross-correlation coefficient for a low-precipitation 
(LP) supercell storm at 00:16 UTC on 1 May 2003.   
The white cross denotes the location of a 4.45-cm 
hailstone. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Tuned hydrometeor classification fields at the 
same date and time as the LP supercell storm shown in  
Fig. 2.  The white cross denotes the location of a 4.45-
cm hailstone. 

 
high performance can be achieved 
without using LDR.  These positive 
results, coupled with HCA’s ability to 
pinpoint the location of hail within a 
storm, show that the polarimetric WSR-
88D radar promises significant 
improvement in detection of hail.      
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Appendix: Accuracy and Skill Scores 

 
The 2x2 contingency tables were 

constructed by comparing algorithm 
detections to ground truth, where a is a 
“hit”, b is a “false alarm”, c is a “miss”, 
and d is a “correct null”.  For each case, 
and all cases combined, we examined 
three accuracy measures, including 
probability of detection (POD), where  

POD = 
ca

a
+

       (1A), 

probability of false detection (POFD),  
where  

POFD = 
db

b
+

      (2A), 

 

FAR = 
ba

b
+

         (3A), 

 
and critical success index (CSI), where  

CSI = 
cba

a
++

     (4A). 

 
Each of these measures ranges 

from 0 to 1, though POD and POFD are 
typically expressed in terms of 



percentages. A perfect forecast would 
have a POD of 100%, a POFD of 0%, 
and a CSI of 1.  Additionally, we 
examined the Heidke skill score (HSS),  

HSS = 

))(())((
)(2

dbbadcca
bcad

+++++
−     (5A), 

 
to assess the skill of the algorithms 
compared to a random forecast.  The 
HSS ranges from 0 to 1, with a perfectly 
skillful forecast having a value of 1. 

 


